Updates and Errata

The following changes were made since Version 3.0 was published in December 2011.

#1 – Deleted August 2012
Portions of Section 5.1 (Hydraulic Sizing Criteria)
- The entire subsection titled “Combination Flow and Volume Design Basis”
- Table 5-3 (Estimated Runoff Coefficients for Various Surfaces During Small Storms)

#2 – Added August 2012
Portions of Section 5.1 (Hydraulic Sizing Criteria)
- A new revised subsection titled “Combination Flow and Volume Design Basis”
- A new revised Table 5-3 (Estimated Runoff Coefficients for Various Surfaces During Small Storms)

#3 – Deleted August 2012
Appendix B (Example Scenarios)

#4 – Added August 2012
New version of Appendix B (Example Scenarios)

#5 – Deleted August 2012
The following text in the Table of Contents of Appendix I (Feasibility Evaluation: Infiltration and Rainwater Harvesting/Use)
- Feasibility Screening Worksheet

#6 – Deleted August 2012
Text in introductory paragraph of Step 1 in Section I.1 of Appendix I (Feasibility Evaluation: Infiltration and Rainwater Harvesting/Use):
- Infiltration/Harvesting and Use Feasibility Screening Worksheet (screening worksheet)

#7 – Added August 2012
Text in introductory paragraph of Step 1 in Section I.1 of Appendix I (Feasibility Evaluation: Infiltration and Rainwater Harvesting/Use):
- Feasibility/Infeasibility of Infiltration and Rainwater Harvesting/Use section of the Stormwater Requirements Checklist

#8 – Deleted August 2012
Text in Step 3.a. of Section I.1 (General Approach) in Appendix I (Feasibility Evaluation: Infiltration and Rainwater Harvesting/Use):
- , if the applicant meets the requirement, described in Appendix J, to document that LID treatment is infeasible.
#9 – Deleted August 2012
Figure I-1 (Flow chart of feasibility and infeasibility evaluation process) in Appendix I

#10 – Added August 2012
Revised Figure I-1 (Flow chart of feasibility and infeasibility evaluation process) in Appendix I

#11 – Deleted August 2012
Section I.2 of Appendix I (Feasibility Evaluation: Infiltration and Rainwater Harvesting/Use)

#12 – Added August 2012
New Section I.2 of Appendix I (Feasibility Evaluation: Infiltration and Rainwater Harvesting/Use) that replaces former references to the screening worksheet with references to the Feasibility/Infeasibility of Infiltration and Rainwater Harvesting/Use section of the Stormwater Requirements Checklist.

#13 – Deleted August 2012
Text in the list of bullets in Section I.5 of Appendix I (Feasibility Evaluation: Infiltration and Rainwater Harvesting/Use):
 • Feasibility Screening Worksheet
Local Contacts

Contact information for each of the Countywide Program’s member agencies is given below. Please contact the local agency with any questions regarding requirements specific to the local jurisdiction.

Atherton: (650) 802-4370
Belmont: (650) 595-7427
Brisbane: (415) 508-2130
Burlingame: (650) 558-7230
Colma: (650) 757-8888
Daly City: (650) 991-8061 / 991-8063
East Palo Alto: (650) 853-3189
Foster City: (650) 286-3270
Half Moon Bay: (650) 726-8260
Hillsborough: (650) 375-7444
Menlo Park: (650) 330-6740
Millbrae: (650) 259-2339
Pacifica: (650) 738-7341
Portola Valley: (650) 851-1700
Redwood City: (650) 780-7380
San Bruno: (650) 616-7074
San Carlos: (650) 802-4370
San Mateo: (650) 522-7340
County of San Mateo: (650) 363-1826
South San Francisco: (650) 829-3840 / 829-3882
Woodside: (650) 851-6790
Credits

The Countywide Program extends appreciation to all who contributed to this document, which was developed under the guidance of the C.3 Technical Guidance Work Group and New Development Subcommittee. We appreciate the comments, suggestions, and guidance provided by the work group and subcommittee members listed below.

2007 C.3 Technical Guidance Work Group
Kathryn Farbstein, Pacifica Jon Lynch, Redwood City
Leslie Lambert, Portola Valley Cassie Prudhel, South San Francisco
Grace Le, Redwood City Pat Stone, Menlo Park

New Development Subcommittee
Muneer Ahmed, Colma Michael Laughlin, Colma
Catherine Barber, Millbrae Camille Leung, County of San Mateo
Chey Anne Brown, Portola Valley Shaun Mao, Menlo Park
Catherine Chan, Hillsborough Gavin Moynahan, San Carlos
Jen Chen, Hillsborough Jeannie Naughton, Daly City
Elizabeth Claycomb, Pacifica Ken Pacini, San Mateo
Michelle Daher, East Palo Alto Cassie Prudhel, South San Francisco
Matt Fabry, Countywide Program Laura Russell, San Bruno
David Huynh, Atherton Tanisha Werner, Redwood City
Ken Johnson, Brisbane Paul Willis, Redwood City
Eva Justimbaste, Burlingame Gilbert Yau, Belmont

The Program recognizes the firms that helped prepare this document. DES Architects and Engineers prepared technical guidance for pervious paving and stormwater treatment, contributed details for vegetated swales, prepared Example Scenarios C.3 and C.4, and contributed to the Plant List. BKF Engineers provided other technical guidance in Chapter 6 and prepared Example Scenarios C.1 and C.2. EOA, Inc., as program management consultant, coordinated and compiled the information and assisted with overall document preparation. Design Community and Environment prepared the planting guidance and the 2010 updated Plant List.

The Program gratefully acknowledges the public agencies whose post-construction stormwater guidance documents served as inspiration and models for this document, including the Alameda Countywide Clean Water Program’s C.3 Stormwater Technical Guidance, the Contra Costa Countywide Clean Water Program’s C.3 Stormwater Guidebook, the Milpitas C.3 Stormwater Guidebook, the Santa Clara Valley Urban Runoff Pollution Prevention Program’s C.3 Stormwater Handbook, the Santa Rosa Area SUSMP Guidelines, Portland, Oregon’s Stormwater Management Manual, and the Countywide Program’s Sustainable Green Streets and Parking Lots Design Guidebook.
Table of Contents

Glossary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>viii</td>
</tr>
</tbody>
</table>

Chapter 1 - Introduction/How to Use this Handbook

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Purpose of this Handbook</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>What is the Countywide Program?</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>How to Use this Handbook</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Precedence</td>
<td>4</td>
</tr>
</tbody>
</table>

Chapter 2 – Background/Regulatory Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Stormwater Problems in Developed Areas</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Low Impact Development Post-Construction Stormwater Controls</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Municipal Stormwater Permit Requirements</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Regulatory Authority</td>
<td>13</td>
</tr>
</tbody>
</table>

Chapter 3 – Preparing Permit Application Submittals

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The Development Review Process</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>How to Prepare Planning Permit Submittals</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>How to Prepare Building Permit Submittals</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Simple Instructions for Small Sites</td>
<td>31</td>
</tr>
</tbody>
</table>

Chapter 4 – Low Impact Development Site Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Tree Preservation and Planting</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Self-Treating Areas</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Self-Retaining Areas</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Reducing the Size of Impervious Areas</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>On-Site Water Storage</td>
<td>43</td>
</tr>
</tbody>
</table>

Chapter 5 – General Technical Guidance for Stormwater Treatment

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Hydraulic Sizing Criteria</td>
<td>45</td>
</tr>
<tr>
<td>5.2</td>
<td>Applicability of Inlet Filters, Oil/Water Separators and Hydrodynamic Separators</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>Using Manufactured Treatment Measures</td>
<td>53</td>
</tr>
<tr>
<td>5.4</td>
<td>Using Treatment Trains</td>
<td>54</td>
</tr>
<tr>
<td>5.5</td>
<td>Infiltration Guidelines</td>
<td>55</td>
</tr>
</tbody>
</table>
Chapter 5 – Technical Guidance for Specific Treatment Measures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6 Technical Guidance for Low-Flow Systems</td>
<td>56</td>
</tr>
<tr>
<td>5.7 Plant Selection and Maintenance</td>
<td>57</td>
</tr>
<tr>
<td>5.8 Mosquito Control</td>
<td>59</td>
</tr>
<tr>
<td>5.9 Incorporating Treatment with Hydromodification Management</td>
<td>60</td>
</tr>
<tr>
<td>5.10 Using Treatment Measures in Bay Fill Locations</td>
<td>60</td>
</tr>
<tr>
<td>5.11 Using Treatment Measures in Seismic Hazard Areas</td>
<td>61</td>
</tr>
<tr>
<td>5.12 Artificial Turf and Stormwater Treatment</td>
<td>61</td>
</tr>
<tr>
<td>5.13 Getting Water into Treatment Measures</td>
<td>62</td>
</tr>
</tbody>
</table>

Chapter 6 – Technical Guidance for Specific Treatment Measures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Bioretention Area (Including Bioretention Swale)</td>
<td>68</td>
</tr>
<tr>
<td>6.2 Flow-Through Planter Box</td>
<td>75</td>
</tr>
<tr>
<td>6.3 Tree Well Filter</td>
<td>80</td>
</tr>
<tr>
<td>6.4 Vegetated Buffer Strip</td>
<td>84</td>
</tr>
<tr>
<td>6.5 Infiltration Trench</td>
<td>88</td>
</tr>
<tr>
<td>6.6 Extended Detention Basin</td>
<td>92</td>
</tr>
<tr>
<td>6.7 Pervious Paving</td>
<td>96</td>
</tr>
<tr>
<td>6.8 Turf Block and Permeable Joint Pavers</td>
<td>100</td>
</tr>
<tr>
<td>6.9 Green Roof</td>
<td>104</td>
</tr>
<tr>
<td>6.10 Rainwater Harvesting & Use</td>
<td>106</td>
</tr>
<tr>
<td>6.11 Media Filter</td>
<td>109</td>
</tr>
</tbody>
</table>

Chapter 7 – Hydromodification Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 What is Hydromodification?</td>
<td>113</td>
</tr>
<tr>
<td>7.2 Hydromodification Management (HM) Controls</td>
<td>115</td>
</tr>
<tr>
<td>7.3 Which Projects need to Implement HM?</td>
<td>116</td>
</tr>
<tr>
<td>7.4 Hydromodification Management (HM) Requirements</td>
<td>117</td>
</tr>
<tr>
<td>7.5 How to Implement HM Requirements</td>
<td>118</td>
</tr>
<tr>
<td>7.6 Area-Specific HM Provisions</td>
<td>121</td>
</tr>
<tr>
<td>7.7 When On-site HM is Impracticable</td>
<td>121</td>
</tr>
</tbody>
</table>

Chapter 8 – Operation and Maintenance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Summary of O&M Requirements</td>
<td>123</td>
</tr>
<tr>
<td>8.2 Preparing Maintenance-Related Documents</td>
<td>127</td>
</tr>
</tbody>
</table>

Chapter 9 – Alternative Compliance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 What Is Alternative Compliance</td>
<td>137</td>
</tr>
<tr>
<td>9.2 Categories of Alternative Compliance</td>
<td>137</td>
</tr>
</tbody>
</table>
Table 5-1: Flow and Volume Based Treatment Measure Designs 46
Table 5-2: Estimated Runoff Coefficients for Various Surfaces During Small
Storms ... 48
Table 5-3: Unit Basin Storage Volume in Inches for 80 Percent Capture
Using 48-Hour Drawdowns .. 49
Table 6-1: Treatment Measures for which Technical Guidance is Provided 67
Table 6-2: Types of Pervious Paving and Possible Applications 96
Table 6-3: Permeable Joint Paver Types and Possible Applications 100
Table 6-4: Typical Water Quality Guideline .. 107

List of Figures

Figure 2-1: The Water Cycle .. 5
Figure 2-2: Change in Volume of Stormwater Runoff after Development 6
Figure 2-3: Creek with Natural Banks .. 7
Figure 2-4: Creek Subject to Hydromodification .. 7
Figure 2-5: Bioretention Areas Designed to Maximize or Prevent Infiltration ... 11
Figure 2-6: Timeline for Implementing New Provision C.3 Requirements 14
Figure 3-1: Sample Development Review Process 16
Figure 3-2: Turf Block Fire Access Road ... 21
Figure 3-3: Detention Basin/Playing Field ... 25
Figure 3-4: Cobbles Used to Prevent Erosion in Vegetated Swale 28
Figure 3-5: Flow-Through Planter Boxes in Dense Urban Setting 32
Figure 4-1: Silva Cells stacked three units high .. 37
Figure 4-2: Self-Treating Area Usage .. 39
Figure 4-3: Commercial/Industrial Site Compared to Same Site with Self-Treating
Areas .. 39
Figure 4-4: Schematic Drainage Plan for Site with Self-Treating Area 39
Figure 4-5: Self-Retaining or Zero Discharge area 41
Figure 4-6: Schematic Drainage Plan for Site with a Self-Retaining Area 42
Figure 4-7: Parking Lifts in Parking Garage, Berkeley 43
Figure 4-8: Installation of Notched Unit Pavers, Portland, Oregon 44
Figure 5-1: Extended Detention Basin, San Jose ... 47
Figure 5-2: Bioretention Area, Daly City .. 49
Figure 5-3: Stepped Manhole Design .. 56
Figure 5-4: StormGate Flow Splitter .. 57
Figure 5-5: Beneficial Insects ... 58
Figure 5-6: Detention Pond... .60
Figure 5-7 Example of Artificial Turf Installation61
Figure 5-8 Cobbles at Storm Drain Inlet62
Figure 5-9 Standard Curb Cut Photo63
Figure 5-10 Standard Curb Cut Section63
Figure 5-11 Standard Curb Cut Plan View63
Figure 5-12 Standard Curb Curb Cut with Side Wings Photo64
Figure 5-13 Standard Curb Cut with Side Wings Section64
Figure 5-14 Standard Curb Cut with Side Wings Plan View64
Figure 5-15 Wheelstop Curbs Photo .. .65
Figure 5-16 Wheelstop Curbs Section65
Figure 5-17 Wheelstop Curbs Plan View65
Figure 5-18 Grated Curb Cut Photo66
Figure 5-19 Grated Curb Cut Section66
Figure 5-20 Grated Curb Cut Plan View66
Figure 6-1: Bioretention Area68
Figure 6-2: Cross Section, Bioretention Area71
Figure 6-3: Cross-Section, Bioretention Area (side view)72
Figure 6-4: Check Dams72
Figure 6-5: Cross section of bioretention area showing inlet from paving73
Figure 6-6: Bioretention Area in Landscaping for Rain Water Leaders73
Figure 6-7: Cross section of Lined Bioretention Area (infiltration precluded)74
Figure 6-8: Flow-Through Planter75
Figure 6-9: Plan View of Long, Linear Flow-Through Planter77
Figure 6-10: Plan View of Planter78
Figure 6-11: Cross Section A-A of Flow-Through Planter78
Figure 6-12: Cross Section B-B of Flow Through Planter79
Figure 6-13: Above-Grade Planters79
Figure 6-14: Close-Up of Flow Through Planter79
Figure 6-15: Tree Well Filter .. .80
Figure 6-16: Non-Proprietary Tree Filter with Overflow Bypass82
Figure 6-17: Cut Away View .. .83
Figure 6-18: Roadside, Vegetated Buffer Strip84
Figure 6-19: Plan View, Vegetated Buffer Strip86
Figure 6-20: Profile View, Vegetated Buffer Strip87
Figure 6-21: Infiltration Trench .. .88
Figure 6-22: Infiltration Trench Cut-Away View90
Figure 6-23: Cut-Away View: Infiltration Trench with Observation Well91
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-24</td>
<td>Extended Detention Basin</td>
<td>92</td>
</tr>
<tr>
<td>6-25</td>
<td>Side View of Riser</td>
<td>94</td>
</tr>
<tr>
<td>6-26</td>
<td>Top View of Riser (Square Design)</td>
<td>95</td>
</tr>
<tr>
<td>6-27</td>
<td>Plan View, Typical Extended Detention Basin</td>
<td>95</td>
</tr>
<tr>
<td>6-28</td>
<td>Pervious Concrete</td>
<td>96</td>
</tr>
<tr>
<td>6-29</td>
<td>Surface View of Parking Lot</td>
<td>98</td>
</tr>
<tr>
<td>6-30</td>
<td>Profile of Pervious Concrete Installation</td>
<td>99</td>
</tr>
<tr>
<td>6-31</td>
<td>Profile of Porous Asphalt Installation</td>
<td>99</td>
</tr>
<tr>
<td>6-32</td>
<td>Turf Block and Pave Mat</td>
<td>100</td>
</tr>
<tr>
<td>6-33</td>
<td>Profile of Brick Paver Installation</td>
<td>102</td>
</tr>
<tr>
<td>6-34</td>
<td>Profile of Natural Stone Paver Installation</td>
<td>102</td>
</tr>
<tr>
<td>6-35</td>
<td>Profile of Turf Block Installation</td>
<td>102</td>
</tr>
<tr>
<td>6-36</td>
<td>Profile of Unit Paver Installation</td>
<td>103</td>
</tr>
<tr>
<td>6-37</td>
<td>Unit Pavers in Private Road, Redwood City</td>
<td>103</td>
</tr>
<tr>
<td>6-38</td>
<td>Notched Pavers</td>
<td>103</td>
</tr>
<tr>
<td>6-39</td>
<td>Parking Lot with Turf-Covered Roof</td>
<td>104</td>
</tr>
<tr>
<td>6-40</td>
<td>Extensive Green Roof</td>
<td>105</td>
</tr>
<tr>
<td>6-41</td>
<td>Intensive Green Roof</td>
<td>105</td>
</tr>
<tr>
<td>6-42</td>
<td>Plants Supporting Endangered Butterflies</td>
<td>105</td>
</tr>
<tr>
<td>6-43</td>
<td>Rainwater Collection, Mills College, Oakland</td>
<td>106</td>
</tr>
<tr>
<td>6-44</td>
<td>System C Filter Cartridge</td>
<td>109</td>
</tr>
<tr>
<td>6-45</td>
<td>Cut Away Profile Views, System A Filter</td>
<td>111</td>
</tr>
<tr>
<td>6-46</td>
<td>Profile View, Typical System C Filter Array</td>
<td>112</td>
</tr>
<tr>
<td>6-47</td>
<td>Plan View, Typical System C Filter Array</td>
<td>112</td>
</tr>
<tr>
<td>7-1</td>
<td>Stormwater Peak Discharge</td>
<td>114</td>
</tr>
<tr>
<td>7-2</td>
<td>Effects of Urbanization on the Local Hydrologic Cycle</td>
<td>114</td>
</tr>
<tr>
<td>7-3</td>
<td>Variation in Rainfall Contribution</td>
<td>115</td>
</tr>
<tr>
<td>7-4</td>
<td>Schematic Flow Duration Pond and Flow Duration Curves</td>
<td>120</td>
</tr>
<tr>
<td>8-1</td>
<td>Bioretention Area in Daly City</td>
<td>129</td>
</tr>
<tr>
<td>8-2</td>
<td>Flow-Through Planter</td>
<td>130</td>
</tr>
<tr>
<td>8-3</td>
<td>Non-Proprietary Tree Well Filter</td>
<td>131</td>
</tr>
<tr>
<td>8-4</td>
<td>Vegetated Buffer Strip</td>
<td>132</td>
</tr>
<tr>
<td>8-5</td>
<td>Infiltration Trench</td>
<td>133</td>
</tr>
<tr>
<td>8-6</td>
<td>Extended Detention Basin</td>
<td>134</td>
</tr>
<tr>
<td>8-7</td>
<td>Rainwater Harvesting System, Mills College, Oakland</td>
<td>135</td>
</tr>
<tr>
<td>8-8</td>
<td>Example of Media Filter Cartridge</td>
<td>136</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay Area Hydrology Model (BAHM)</td>
<td>A computer software application to assist project applicants in sizing specialized detention facilities that will allow a project to meet the Flow Duration Control standard where required by the Hydromodification Management Provision (Provision C.3.g) of the Municipal Regional Stormwater Permit. The BAHM is available for download at www.bayareahydrologymodel.com.</td>
</tr>
<tr>
<td>Beneficial Use</td>
<td>A waterbody's beneficial uses are the resources, services, and qualities of aquatic systems that are the ultimate goals of protecting and achieving high water quality. The beneficial uses of surface waters, groundwaters, marshes, and mudflats are legally defined in the San Francisco Bay Basin Water Quality Control Basin Plan and serve as a basis for establishing water quality objectives and the discharge prohibitions or conditions necessary to attain them.</td>
</tr>
<tr>
<td>Best Management Practice (BMP)</td>
<td>Any program, technology, process, siting criteria, operational method or measure, or engineered system, which when implemented prevents, controls, removes, or reduces pollution. Includes schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce water pollution. BMPs also include treatment requirements, operating procedures, and practices to control site runoff, spillage or leaks, litter or waste disposal, or drainage from raw material storage.</td>
</tr>
<tr>
<td>Bioinfiltration Area</td>
<td>A type of low development treatment measure designed to have a surface ponding area that allows for evapotranspiration, and to filter water through 18 inches of engineered biotreatment soil. After the water filters through the engineered soil, it encounters a 12-inch layer of rock in which an underdrain is typically installed. If the underlying soils have a saturated hydraulic conductivity rate of 1.6” per hour or greater, then the C.3.d amount of runoff is treated by evapotranspiration and infiltration. If the soils have a lower hydraulic conductivity rate, then the bioinfiltration area treats stormwater with evapotranspiration, some infiltration, and the remaining amount of the C.3.d amount of runoff is filtered and released into the underdrain. The difference between a bioinfiltration area and a bioretention area is that the bioinfiltration area is never lined with an impermeable layer; whereas, a bioretention area may be lined or unlined.</td>
</tr>
<tr>
<td>Bioretention Area</td>
<td>A type of low development treatment measure designed to have a surface ponding area that allows for evapotranspiration, and to filter water through 18 inches of engineered biotreatment soil. After the water filters through the engineered soil, it encounters a...</td>
</tr>
<tr>
<td>Glossary Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>12-inch layer of rock</td>
<td>12-inch layer of rock in which an underdrain is typically installed. If the underlying soils have a saturated hydraulic conductivity rate of 1.6” per hour or greater, then the C.3.d amount of runoff is treated by evapotranspiration and infiltration. If the soils have a lower hydraulic conductivity rate, or if infiltration is prohibited and the bioretention area is lined with an impermeable layer, then the bioretention area treats stormwater with evapotranspiration, some or no infiltration, and the remaining amount of the C.3.d amount of runoff is filtered and released into the underdrain. The difference between a bioinfiltration area and a bioretention area is that the bioinfiltration area is never lined with an impermeable layer; whereas, a bioretention area may be lined or unlined.</td>
</tr>
<tr>
<td>Biotreatment</td>
<td>A type of low impact development treatment allowed under Provision C.3.c of the MRP, if infiltration, evapotranspiration and rain water harvesting and use are infeasible. As required by Provision C.3.c.i(2)(vi), biotreatment systems shall be designed to have a surface area no smaller than what is required to accommodate a 5 inches/hour stormwater runoff surface loading rate and shall use biotreatment soil as approved by the Regional Water Board, or equivalent. Quality Control Board on April 29.</td>
</tr>
<tr>
<td>Buffer Strip or Zone</td>
<td>Strip of erosion-resistant vegetation over which stormwater runoff as sheet flow is directed.</td>
</tr>
<tr>
<td>C.3 Provision of Municipal Regional Stormwater NPDES Permit (MRP)</td>
<td>Provision of the Municipal Regional Stormwater NPDES Permit (MRP) that requires each Discharger to control the flow of stormwater and stormwater pollutants from new development and redevelopment sites over which it has jurisdiction.</td>
</tr>
<tr>
<td>C.3 Regulated Projects</td>
<td>Development projects as defined by Provision C.3.b.ii of the MRP. This includes public and private projects that create and/or replace 10,000 square feet or more of impervious surface, and restaurants, retail gasoline outlets, auto service facilities, and uncovered parking lots (stand-alone or part of another use) that create and/or replace 5,000 square feet or more of impervious surface. Single family homes that are not part of a larger plan of development are specifically excluded.</td>
</tr>
<tr>
<td>C.3.d Amount of Runoff</td>
<td>The amount of stormwater runoff from C.3 Regulated Projects that must receive stormwater treatment, as described by hydraulic sizing criteria in Provision C.3.d of the MRP.</td>
</tr>
<tr>
<td>Clean Water Act (CWA)</td>
<td>The Federal Water Pollution Prevention and Control Act, or Clean Water Act (33 U.S. Code 1251 et seq.) is intended to control or eliminate surface water pollution and establishes the National Pollutant Discharge Elimination System of permits to regulate surface water discharges from</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal Storm Drains</td>
<td>Storm drains, publicly-owned treatment works and industrial discharges.</td>
</tr>
<tr>
<td>Cobbles</td>
<td>Natural stones of various sizes generally consisting of larger granular material ranging from 6 inches to 24 inches diameter set on soil.</td>
</tr>
<tr>
<td>Complete Application</td>
<td>Applications that have been accepted by the Planning Department and have not received a letter within 30 calendar days stating that the application is incomplete (consistent with the Permit Streamlining Act). Where an application has not been accepted by the Planning Department and the applicant has received a letter within 30 days stating that the application is incomplete, the application will be deemed complete if the additional requested information is submitted to the satisfaction of the Planning Department.</td>
</tr>
<tr>
<td>Conditions of Approval (COAs)</td>
<td>Requirements the municipality may adopt for a project in connection with a discretionary action (e.g., adoption of an EIR or negative declaration or issuance of a use permit). COAs may include features to be incorporated into the final plans for the project and may also specify uses, activities, and operational measures that must be observed over the life of the project.</td>
</tr>
<tr>
<td>Conduit/Conveyance System/Culvert</td>
<td>Channels or pipes for collecting and directing the flow of water. Conduits and conveyance systems may be open channels, covered channels or pipes. Culverts are covered channels or large diameter pipes.</td>
</tr>
<tr>
<td>Constructed Wetland</td>
<td>Constructed detention basins that have a permanent pool of water throughout the year and capacity for temporary additional storage of runoff that is released via an outlet structure. They differ from wet ponds in that they are typically shallower and have greater vegetation coverage.</td>
</tr>
<tr>
<td>Construction General Permit</td>
<td>A NPDES permit adopted by the State Water Resources Control Board (SWRCB) for the discharge of stormwater associated with construction activity from soil disturbance of one (1) acre or more. The current Construction General Permit was adopted by the SWRCB on September 2, 2009, and went into effect July 1, 2010.</td>
</tr>
<tr>
<td>Countywide Program</td>
<td>San Mateo Countywide Water Pollution Prevention Program.</td>
</tr>
<tr>
<td>Design Storm</td>
<td>A hypothetical rainstorm defined by rainfall intensities and durations.</td>
</tr>
<tr>
<td>Detention</td>
<td>The temporary storage of stormwater runoff in ponds, vaults, within berms, or in depressed areas to allow treatment by sedimentation and metered discharge of runoff at reduced peak flow rates. See Infiltration and retention.</td>
</tr>
<tr>
<td>Directly-Connected Impervious Area (DCIA)</td>
<td>The area covered by a building, impermeable pavement, and/or other impervious surfaces, which drains directly into the storm drain without first flowing across permeable land area (e.g., turf buffers).</td>
</tr>
<tr>
<td>Directly Discharging</td>
<td>Outflow from a drainage conveyance system that is composed entirely or predominantly of flows from the subject property, development, subdivision, or industrial facility, and not commingled with flows from municipal storm drains, publicly-owned treatment works and industrial discharges.</td>
</tr>
<tr>
<td>Adjacent lands.</td>
<td></td>
</tr>
<tr>
<td>Direct Infiltration</td>
<td>Infiltration via methods or devices, such as dry wells or infiltration trenches, designed to bypass unsaturated surface soils in order to transmit runoff directly to subsurface soil.</td>
</tr>
<tr>
<td>Discharge</td>
<td>A release or flow of stormwater or other substance from a conveyance system or storage container.</td>
</tr>
<tr>
<td>Discharger</td>
<td>Any responsible party or site owner or operator within the MRP Permittees’ jurisdiction whose site discharges stormwater runoff, or a non-stormwater discharge.</td>
</tr>
<tr>
<td>Drawdown Time</td>
<td>The time required for a stormwater detention or infiltration BMP to drain and return to the dry-weather condition. For detention BMPs, drawdown time is a function of basin volume and outlet orifice size. For infiltration BMPs, drawdown time is a function of basin volume and infiltration rate.</td>
</tr>
<tr>
<td>Dry Weather Flow</td>
<td>Flows that occur during periods without rainfall. In a natural setting, dry weather flows result from precipitation that infiltrates into the soil and slowly moves through the soil to the creek channel. Dry weather flows in storm drains may result from human activities, such as over-irrigation.</td>
</tr>
<tr>
<td>Dry Well</td>
<td>Structure placed in an excavation or boring, or excavation filled with open-graded rock, that is designed to collect stormwater and infiltrate into the subsurface soil.</td>
</tr>
<tr>
<td>Erosion</td>
<td>The wearing away of land surface by wind or water. Erosion occurs naturally from weather or runoff but can be intensified by land-clearing practices related to farming, residential or industrial development, road building, or timber cutting.</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>Evaporating water into the air directly or through plant transpiration.</td>
</tr>
<tr>
<td>Extended Detention Basin</td>
<td>Constructed basins with drainage outlets that are designed to detain runoff from a water quality design storm for some minimum time (e.g., 48 hours) to allow settling of sediment and pollutants.</td>
</tr>
<tr>
<td>Filter Fabric</td>
<td>Geotextile of relatively small mesh or pore size that is used to: (a) allow water to pass through while keeping sediment out (permeable); or (b) prevent both runoff and sediment from passing through (impermeable).</td>
</tr>
<tr>
<td>Flow-based Treatment Measures</td>
<td>Stormwater treatment measures that treat pollutants from a moving stream of water through filtration, infiltration, sedimentation and/or biological processes.</td>
</tr>
</tbody>
</table>
| Flow Duration | Either a) the total hours that surface flow from a watershed or drainage area occurs at a specified magnitude based on a long-term time history of rainfall and runoff records, or b) the cumulative percentage of total hours that flows exceed the specified magnitude (as used in the BAHM). The overall distribution of flow durations is then expressed by a histogram or cumulative distribution curve, showing flow durations for equal
<table>
<thead>
<tr>
<th>Glossary Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Duration Control</td>
<td>An approach to mitigate development-caused hydromodification which involves developing continuous simulation models of runoff from both pre-project and post-project site conditions, comparing flow durations for a designated range of flows, and designing specialized detention and discharge structures to reduce excess post-project flow duration for flows in the designated range (See Chapter 7).</td>
</tr>
<tr>
<td>Flow-Through Planter Box</td>
<td>Structure designed to treat stormwater by intercepting rainfall and slowly draining it through filter media and out of planter.</td>
</tr>
<tr>
<td>Grading</td>
<td>The excavation and/or filling of the land surface to a desired shape or elevation.</td>
</tr>
<tr>
<td>Green Roof/Roof Garden</td>
<td>Vegetated roof systems that retain and filter stormwater prior to drainage off building rooftops.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Subsurface water that occurs in pervious geologic formations that are fully saturated.</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>By-products of human activities that can pose a substantial or potential hazard to human health or the environment when improperly managed. Possesses at least one of four characteristics (flammable, corrosivity, reactivity, or toxicity), or appears on special EPA lists.</td>
</tr>
<tr>
<td>Head</td>
<td>In hydraulics, energy represented as a difference in water elevation. In slow-flowing open systems, the difference in water surface elevation, e.g., between an inlet and outlet.</td>
</tr>
<tr>
<td>Heritage Tree</td>
<td>An individual tree of any size or species given the 'heritage tree' designation as defined by the municipality's tree ordinance or other section of the municipal code.</td>
</tr>
<tr>
<td>High-Flow Bypass</td>
<td>In stormwater treatment measures, a pipe, outlet, or other structure designed to convey flood flows directly to the storm drain systems without entering the treatment measure.</td>
</tr>
<tr>
<td>Hydrodynamic Separator</td>
<td>A commonly used term for mechanical stormwater treatment systems that are designed as flow-through structures with a settling or separation unit to remove sediment and other pollutants that may settle to the bottom of the separation unit.</td>
</tr>
<tr>
<td>Hydrograph</td>
<td>Runoff flow rate plotted as a function of time.</td>
</tr>
<tr>
<td>Hydromodification</td>
<td>“Hydrograph modification”, or more generally the changes in natural watershed hydrological processes and runoff characteristics caused by urbanization or other land use changes that result in increased stream flows and sediment transport.</td>
</tr>
<tr>
<td>Hydrologic Soil Group</td>
<td>Classification of soils by the Natural Resources Conservation Service into A, B, C and D groups according to infiltration capacity.</td>
</tr>
<tr>
<td>Imperviousness</td>
<td>A term applied to surfaces (roads, sidewalks, rooftops, and parking lots) that prevent or inhibit rainfall from sinking into groundcover and groundwater.</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Impervious surface</td>
<td>A surface covering or pavement of a developed parcel of land that prevents the land’s natural ability to absorb and infiltrate rainfall/stormwater. Impervious surfaces include, but are not limited to, roof tops; walkways; patios; driveways; parking lots; storage areas; impervious concrete and asphalt; and any other continuous watertight pavement or covering. Landsaped soil and pervious pavement, including pavers with pervious openings and seams, underlain with pervious soil or pervious storage material, such as a gravel layer sufficient to hold at least the Provision C.3.d volume of rainfall runoff are not impervious surfaces. Open, uncovered retention/detention facilities are not considered impervious surfaces for purposes of determining whether a project is a Regulated Project under Provisions C.3.b and C.3.g. Open, uncovered retention/detention facilities shall be considered impervious surfaces for purposes of runoff modeling and meeting the Hydromodification standard.</td>
</tr>
<tr>
<td>Indirect Infiltration</td>
<td>Infiltration via facilities, such as swales and bioretention areas, that are expressly designed to hold runoff and allow it to percolate into surface soils. Runoff may reach groundwater indirectly or may be underdrained through subsurface pipes.</td>
</tr>
<tr>
<td>Infiltration</td>
<td>Seepage of runoff through the soil to mix with groundwater. See retention.</td>
</tr>
<tr>
<td>Infiltration Devices</td>
<td>Infiltration facilities that are deeper that they are wide and designed to infiltrate stormwater runoff into the subsurface and, as designed, bypass the natural groundwater protection afforded by surface soil. These devices include dry wells, injection wells and infiltration trenches (includes French drains).</td>
</tr>
<tr>
<td>Infiltration Facilities</td>
<td>A term that refers to both infiltration devices and measures.</td>
</tr>
<tr>
<td>Infiltration Measures</td>
<td>Infiltration facilities that are wider than they are deep (e.g., bioinfiltration, infiltration basins and shallow wide infiltration trenches and dry wells).</td>
</tr>
<tr>
<td>Infiltration Trench</td>
<td>Long narrow trench filled with permeable material (e.g., gravel), designed to store runoff and infiltrate through the bottom and sides into the subsurface soil.</td>
</tr>
<tr>
<td>Inlet</td>
<td>An entrance into a ditch, storm sewer, or other waterway</td>
</tr>
<tr>
<td>Integrated Management Practice (IMP)</td>
<td>A stormwater treatment measure that meets both stormwater treatment and hydromodification management objectives.</td>
</tr>
<tr>
<td>Integrated Pest Management (IPM)</td>
<td>An approach to pest control that utilizes regular monitoring to determine if and when treatments are needed and employs physical, mechanical, cultural, biological, and educational tactics to keep pest numbers low enough to prevent unacceptable damage or annoyance.</td>
</tr>
<tr>
<td>Glossary Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Low Impact Development</td>
<td>A land planning and engineering design approach with a goal of reducing stormwater runoff and mimicking a site’s predevelopment hydrology by minimizing disturbed areas and impervious cover and then infiltrating, storing, detaining, evapotranspiring, and/or biotreating stormwater runoff close to its source, or onsite.</td>
</tr>
<tr>
<td>Low Impact Development (LID) Treatment</td>
<td>Removal of pollutants from stormwater runoff using the following types of stormwater treatment measures: rainwater harvesting and use, infiltration, evapotranspiration, or, where these are infeasible, biotreatment.</td>
</tr>
<tr>
<td>Maintenance Plan</td>
<td>A plan detailing operation and maintenance requirements for stormwater treatment measures and/or structural hydromodification measures incorporated into a project.</td>
</tr>
<tr>
<td>Maximum Extent Practicable (MEP)</td>
<td>Standard, established by the 1987 amendments to the Clean Water Act, for the implementation of municipal stormwater pollution prevention programs. The Countywide Program uses a continuous improvement approach, regularly updating its performance standards to achieve MEP.</td>
</tr>
<tr>
<td>Media Filter</td>
<td>Two-chambered system that includes a pretreatment settling basin and a filter bed filled with sand or other absorptive filtering media.</td>
</tr>
<tr>
<td>Municipal Regional Stormwater Permit (MRP)</td>
<td>The Phase I municipal stormwater NPDES permit under which discharges are permitted from municipal separate storm sewer systems throughout San Mateo County and other NPDES Phase I jurisdictions within the San Francisco Bay Region</td>
</tr>
<tr>
<td>New Development</td>
<td>Land disturbing activities; structural development, including construction or installation of a building or structure, creation of impervious surfaces; and/or land subdivision.</td>
</tr>
<tr>
<td>Non-Stormwater Discharge</td>
<td>Any discharge to municipal separate storm drain that is not composed entirely of stormwater. Some types of non-stormwater discharges may be authorized by NPDES permits and others prohibited.</td>
</tr>
<tr>
<td>Notice of Intent (NOI)</td>
<td>A formal notice to State Water Resources Control Board submitted by the owner/developer to obtain coverage under the Construction General NPDES Permit. The NOI provides information on the owner, location, and type of project, and certifies that the permittee will comply with the conditions of the State Construction General Permit.</td>
</tr>
<tr>
<td>NPDES Permit</td>
<td>An authorization, license, or equivalent control document issued by EPA or an approved State agency to implement the requirements of the National Pollutant Discharge Elimination System (NPDES) program. As part of the 1972 Clean Water Act, Congress established the NPDES permitting system to regulate the discharge of pollutants from municipal sanitary sewers and industries. The NPDES program was expanded in 1987 to incorporate permits for stormwater discharges as well. Regional Water Quality Control Boards issue stormwater NPDES Permits to local government agencies in order to regulate discharges of municipal stormwater to waters of the state.</td>
</tr>
<tr>
<td>Numeric Criteria</td>
<td>Sizing requirements for stormwater treatment controls established in Provision C.3.d. of the countywide stormwater NPDES permit.</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Operation and Maintenance (O&M)</td>
<td>Refers to requirements in the stormwater NPDES permit to inspect treatment BMPs and implement preventative and corrective maintenance in perpetuity. See Chapter 8.</td>
</tr>
<tr>
<td>Operational Source Control Measure</td>
<td>Low technology, low cost activities, procedures, or management practices designed to prevent pollutants associated with site functions and activities from being discharged with stormwater runoff. Examples include good housekeeping practices, employee training, standard operating practices, inventory control measures.</td>
</tr>
<tr>
<td>Outfall/ Outlet</td>
<td>The point where stormwater discharges from a pipe, channel, ditch, or other conveyance to a waterway.</td>
</tr>
<tr>
<td>Percentile Rainfall Intensity</td>
<td>A method of designing flow-based treatment controls that ranks long-term hourly rainfall intensities and selects the 85th percentile value, and then doubles this value.</td>
</tr>
<tr>
<td>Permeability</td>
<td>A property of soil that enables water or air to move through it. Usually expressed in inches/hour or inches/day.</td>
</tr>
<tr>
<td>Pervious Concrete</td>
<td>A discontinuous mixture of coarse aggregate, hydraulic cement and other cementitious materials, admixtures, and water; having a surface void content of 15-25% allowing water to pass through.</td>
</tr>
<tr>
<td>Pervious Surface</td>
<td>Permeable hardscape or paved surface that allows surface runoff to infiltrate into surface soil (e.g., turf block, brick, natural stone, cobbles).</td>
</tr>
<tr>
<td>Perviousness</td>
<td>The permeability of a surface that can be penetrated by stormwater to infiltrate the underlying soils.</td>
</tr>
<tr>
<td>Point of Compliance</td>
<td>For design to meet Flow Duration Control requirements for hydromodification management, the point at which pre-project runoff is compared to post-project runoff, usually near the point where runoff leaves the project area.</td>
</tr>
<tr>
<td>Pollutant</td>
<td>A substance introduced into the environment that adversely affects or potentially affects the usefulness of the receiving water.</td>
</tr>
<tr>
<td>Porous Asphalt</td>
<td>Open-graded asphalt concrete over an open-graded aggregate base, over a draining soil. Contains very little fine aggregate (dust or sand) and is comprised almost entirely of stone aggregate and asphalt binder.</td>
</tr>
<tr>
<td>Post-Construction Stormwater Control</td>
<td>See Stormwater Control.</td>
</tr>
<tr>
<td>Potential Rainwater Capture Area</td>
<td>The impervious area from which rainwater may be potentially be captured, if rainwater harvesting and use were implemented for a project. If the entire site is evaluated for rainwater harvesting and use feasibility, this consists of the impervious area of the proposed project; for redevelopment projects that replace 50% or more of the existing impervious surface, it also includes the areas of existing impervious...</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Any form of rain or snow.</td>
</tr>
<tr>
<td>The Program</td>
<td>San Mateo Countywide Water Pollution Prevention Program</td>
</tr>
<tr>
<td>Provision C.3</td>
<td>A reference to the requirements in the MRP requiring each MRP Discharger to control the flow of stormwater and stormwater pollutants from new and redevelopment sites over which it has jurisdiction.</td>
</tr>
<tr>
<td>Rational Method</td>
<td>A method of calculating runoff flows based on rainfall intensity and the amount of runoff from the tributary area.</td>
</tr>
<tr>
<td>Redevelopment</td>
<td>A project on a previously developed site that adds or replaces impervious surface on the site. The MRP excludes interior remodels and routine maintenance or repair, including roof or exterior surface replacement, pavement resurfacing, repaving and road pavement structural section rehabilitation within the existing footprint, and any other reconstruction work within a public street or road right-of-way where both sides of the right-of-way are developed.</td>
</tr>
<tr>
<td>Regional Water Quality Control Board, San Francisco Bay Area Water Board (RWQCB)</td>
<td>One of nine California Regional Water Boards, the Regional Water Board for the San Francisco Bay Region is responsible for implementing pollution control provisions of the Clean Water Act and California Water Code within the area that drains to San Francisco Bay and ocean. Also referred to as Water Board.</td>
</tr>
<tr>
<td>Retention</td>
<td>The storage of stormwater to prevent it from leaving the development site; may be temporary or permanent.</td>
</tr>
<tr>
<td>Runoff</td>
<td>Water originating from rainfall and other sources (e.g., sprinkler irrigation) that is found in drainage facilities, creeks, streams, springs, seeps, ponds, lakes, wetlands, and shallow groundwater.</td>
</tr>
<tr>
<td>San Mateo Countywide Water Pollution Prevention Program (“Countywide Program” or “Program”)</td>
<td>A program of the City/County Association of Governments consisting of the 16 San Mateo County cities, 4 San Mateo County towns and San Mateo County. All these municipalities are listed as Co-permittees in a municipal stormwater NPDES permit adopted by the Regional Water Quality Control Board. The Program implements common tasks and assists the municipalities to implement their local stormwater pollution prevention programs. The Program’s former name was the San Mateo Countywide Stormwater Pollution Prevention program (STOPPPP).</td>
</tr>
<tr>
<td>Screening Density</td>
<td>A threshold of density (e.g., number of units or interior floor area) per acre of impervious surface, associated with a certain potential demand for non-potable water, for C.3 regulated projects. Screening densities are used to determine the feasibility and infeasibility of rainwater harvesting and use. Screening density</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sedimentation</td>
<td>The process of depositing soil particles, clays, sands, or other sediments that were picked up by runoff.</td>
</tr>
<tr>
<td>Sediments</td>
<td>Soil, sand, and minerals washed from land, roofing material, and pavements into water usually after rain, which accumulate in reservoirs, rivers, and harbors.</td>
</tr>
<tr>
<td>Self-Retaining Area</td>
<td>A portion of a development site designed to retain the first one inch of rainfall (by ponding and infiltration and/or evapotranspiration) without producing stormwater runoff. Self-retaining areas must have at least a 2:1 ratio of contributing area to a self-retaining area and a 3” ponding depth. Self-retaining areas may include graded depressions with landscaping or pervious pavement. Areas that Contribute Runoff to Self-Retaining Areas are impervious or partially pervious areas that drain to self-retaining areas.</td>
</tr>
<tr>
<td>Self-Treating Area</td>
<td>A portion of a development site in which infiltration, evapotranspiration and other natural processes remove pollutants from stormwater. Self-treating areas may include conserved natural open areas, areas of landscaping, green roofs and pervious pavement. Self-treating areas treat only the rain falling on them and do not receive stormwater runoff from other areas.</td>
</tr>
<tr>
<td>Site Design Measures</td>
<td>Site planning techniques to conserve natural spaces and/or limit the amount of impervious surface at new development and significant redevelopment projects in order to minimize runoff and the transport of pollutants in runoff.</td>
</tr>
<tr>
<td>Source Control Measures</td>
<td>Any schedules of activities, structural devices, prohibitions of practices, maintenance procedures, managerial practices or operational practices that aim to prevent stormwater pollution by reducing the potential for pollution at its source.</td>
</tr>
<tr>
<td>Special Projects</td>
<td>Certain types of smart growth, high density and transit oriented development projects that are allowed, under Provision C.3.e.ii of the MRP, to receive LID treatment reductions. The specific development project types will be described in an amendment to the MRP, anticipated in Fall 2011.</td>
</tr>
<tr>
<td>Storm Drains</td>
<td>Above and belowground structures for transporting stormwater to creeks or outfalls for flood control purposes.</td>
</tr>
<tr>
<td>Storm Event</td>
<td>A rainfall event that produces more than 0.1 inch of precipitation and is separated from the previous storm event by at least 72 hours of dry weather.</td>
</tr>
<tr>
<td>Stormwater</td>
<td>Stormwater runoff, snow-melt runoff, surface runoff, and drainage,</td>
</tr>
<tr>
<td>varies according to location</td>
<td>(see Attachment 2 of the LID feasibility worksheets in Appendix.) If the screening density is met or exceeded, the Rainwater Harvesting and Use Feasibility Worksheet must be completed for the project.</td>
</tr>
</tbody>
</table>
excluding infiltration and irrigation tailwater.

<table>
<thead>
<tr>
<th>Glossary Terms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stormwater Control</td>
<td>A design feature of a development or redevelopment project, or a routinely-conducted activity that is intended to prevent, minimize or treat pollutants in stormwater, or to reduce erosive flows during the life of the project. Stormwater control is a term that collectively refers to site designs to promote water quality, source control measures, stormwater treatment measures, and hydromodification management measures. Also referred to as “post-construction stormwater control” or “post-construction stormwater measure.”</td>
</tr>
<tr>
<td>Stormwater Pollution Prevention Plan (SWPPP)</td>
<td>A plan providing for temporary measure to control sediment and other pollutants during construction.</td>
</tr>
<tr>
<td>Storm Water Quality Task Force (SWQTF)</td>
<td>Publisher of the 2003 California Storm Water BMP Handbooks. See California Association of Stormwater Quality Agencies (CASQA).</td>
</tr>
<tr>
<td>Stormwater Treatment Measure</td>
<td>Any engineered system designed to remove pollutants by simple gravity settling of particulate pollutants, filtration, biological uptake, media adsorption or any other physical, biological, or chemical process. Sometimes called a treatment control, treatment control measure, or treatment control BMP.</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>Total project cost includes the construction (labor) and materials cost of the physical improvements proposed; however, it does not include land, transactions, financing, permitting, demolition, or off-site mitigation costs.</td>
</tr>
<tr>
<td>Treatment</td>
<td>The application of engineered systems that use physical, chemical, or biological processes to remove pollutants. Such processes include, but are not limited to, filtration, gravity separation, media adsorption, biodegradation, biological uptake, and infiltration.</td>
</tr>
<tr>
<td>Turf Block</td>
<td>Open celled unit paver filled with soil and planted with turf.</td>
</tr>
<tr>
<td>Vector Control</td>
<td>Any method to limit or eradicate the carriers of vector borne diseases, for which the pathogen (e.g. virus or parasite) is transmitted by a vector which can be mammals, birds or arthropods, especially insects, and more specifically mosquitoes. For the purposes of this document, vector control refers to mosquito control.</td>
</tr>
<tr>
<td>Vegetated Filter Strip</td>
<td>Linear strips of vegetated surfaces that are designed to treat sheet runoff flow from adjacent surfaces.</td>
</tr>
<tr>
<td>Vegetated Swale</td>
<td>Open, shallow channels with vegetation covering side slopes and bottom that collect and slowly convey runoff flow to downstream discharge points.</td>
</tr>
<tr>
<td>Volume-Based Stormwater Treatment Measures</td>
<td>Stormwater treatment measures that detain stormwater for a certain period and treat primarily through sedimentation and infiltration.</td>
</tr>
<tr>
<td>Water Quality Inlet</td>
<td>Systems that contain one or more chambers that promote sedimentation of coarse materials and separation of undissolved oil and grease from</td>
</tr>
<tr>
<td>Water Quality Volume (WQV)</td>
<td>For stormwater treatment measures that depend on detention to work, the volume of water that must be detained to achieve maximum extent practicable pollutant removal. This volume of water must be detained for a specified drawdown time.</td>
</tr>
<tr>
<td>WEF Method</td>
<td>A method for determining the required volume of treatment BMPs, recommended by the Water Environment Federation and American Society of Civil Engineers. Described in Urban Runoff Quality Management (WEF/ASCE, 1998).</td>
</tr>
<tr>
<td>Wet Pond</td>
<td>Constructed detention basins that have a permanent pool of water throughout the year and capacity for temporary additional storage of runoff that is released via an outlet structure. They differ from constructed wetlands in that they typically have a greater average depth and less vegetation.</td>
</tr>
</tbody>
</table>
Introduction / How to Use this Handbook

In this Chapter:
- Purpose of this handbook
- Overview of the handbook's contents

1.1 Purpose of this Handbook

This countywide handbook is meant to help developers, builders, and project sponsors include post-construction stormwater controls in their projects, in order to meet local municipal requirements and requirements in the Municipal Regional Stormwater Permit (MRP). The municipalities have to require post-construct stormwater controls as part of their obligations under Provision C.3 of the MRP. This is a National Pollutant Discharge Elimination System (NPDES) permit issued by the San Francisco Bay Regional Water Quality Control Board (Water Board), allowing municipal stormwater systems to discharge to local creeks, San Francisco Bay, and other water bodies.

The Countywide Program has also prepared a Sustainable Green Streets and Parking Lots Design Guidebook to specifically assist municipalities and project applicants with designing street and parking lot projects that treat stormwater runoff in landscape-based treatment measures. The Guidebook includes over 400 photographs and drawings to illustrate potential design solutions to a wide range of project sites. You can download the Guidebook at www.flowstobay.org (click on Business, then New Development).

The term “post-construction stormwater control” refers to permanent features included in a project to reduce pollutants in stormwater and/or erosive flows during the life of the project – after construction is completed. The term “post-construction stormwater control” encompasses Low-Impact Development (LID), which reduces water quality impacts by preserving and re-creating natural landscape features, minimizing imperviousness, and using stormwater as a resource, rather than a waste product.

See the Countywide Program’s Sustainable Green Streets and Parking Lots Design Guidebook for more design concepts on treating stormwater runoff from streets and parking lots.
This handbook does not provide information on the construction best management practices (BMPs) that protect stormwater during construction activities.

Post-construction stormwater controls are required for both private and public projects. Although this handbook is written primarily for sponsors of private development projects, its technical guidance also applies to publicly-sponsored projects. Municipalities may also find the handbook useful for training municipal staff and consulting plan checkers.

1.2 What is the Countywide Program?

The San Mateo Countywide Water Pollution Prevention Program, which was previously named the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP) is a program of the City/County Association of Governments, which is comprised of local elected city council representatives from each municipality, one member of the County Board of Supervisors, and representatives from the local transit district and transportation authority. Each of the Program’s member agencies is responsible for preventing stormwater pollution and implementing its local stormwater pollution prevention and control activities. The Program has 21 member agencies: the 20 cities in the County and unincorporated San Mateo County.

The Program’s member agencies are joint permit holders of the MRP, which is issued by the San Francisco Bay Regional Water Quality Control Board (Water Board). Each member agency is individually responsible for implementing the MRP requirements, but participating in the Program helps them collaborate on countywide initiatives that benefit all members. More information on the Program is available on its website, at www.flowstobay.org.

1.3 How to Use this Handbook

When using this countywide guidance document, please keep in mind that some requirements may vary from one local jurisdiction to the next. In the very early stages of project planning, contact the municipal planning staff to schedule a pre-application meeting to learn how the C.3 requirements – and other planning, zoning and building requirements – will apply to your project. Also, because regulatory requirements may change, be sure to ask the local municipal staff to provide any updates of information or requirements.

It’s important to note that post-construction stormwater design requirements are complex and technical: most projects will require the assistance of a qualified civil engineer, architect, landscape architect, and/or geotechnical engineer.

To help you get started, an overview of the handbook’s chapters and appendices follows:
Chapter 2 explains how development affects stormwater quality, how post-construction stormwater measures help reduce these impacts, and gives a detailed explanation of Provision C.3 requirements.

Chapter 3 gives an overview of how the post-construction stormwater requirements fit into a typical development review process, and offers step-by-step instructions on how to incorporate stormwater control/LID designs into planning permit and building permit application submittals for your project.

Chapter 4 presents information on site design measures, which can help reduce the size of treatment measures.

Chapter 5 provides general technical guidance for stormwater treatment measures, including hydraulic sizing criteria, the applicability of non-landscape-based treatment measures, manufactured treatment measures, using “treatment trains,” infiltration guidelines, plant selection and maintenance, mosquito control, and integrating stormwater treatment with hydromodification management.

Chapter 6 gives technical guidance for specific types of stormwater treatment measures, including bioretention areas (including bioretention swales), flow-through planters, tree well filters, vegetated buffer strips, infiltration trenches, extended detention basins, pervious paving, green roofs, and media filters.

Chapter 7 explains the requirements for hydromodification management measures, which keep the flow rates and volumes of certain post-construction stormwater flows at pre-construction levels, in order to minimize development-induced erosion in creek channels.

Chapter 8 explains the operation and maintenance requirements for stormwater treatment measures.

Chapter 9 describes the alternative compliance provision of the MRP, which allows projects to contribute to off-site alternative compliance projects instead of constructing on-site stormwater treatment measures.

Appendix A includes a list of plants appropriate for use in LID treatment measures. It also offers general guidance on plant selection and maintenance.

Appendix B presents example scenarios, showing how site design, source controls and treatment measures can be incorporated into projects.

Appendix C consists of the Design Criteria Regions for San Mateo County.

Appendix D describes manufactured stormwater treatment measures that may have limited applicability, including inlet filters, oil/water separators, hydrodynamic separators, and media filters.

Appendix E presents guidelines for using stormwater controls that promote on-site infiltration of stormwater.

Appendix F provides guidance for controlling mosquito production in stormwater treatment measures.
Appendix G includes templates for preparing stormwater treatment measure maintenance plans.

Appendix H presents the Hydromodification Management Susceptibility Map.

Appendix I includes guidance for using the Feasibility/Infeasibility Criteria to determine when the full C.3.d amount of stormwater runoff cannot be treated with rainwater harvesting and use, infiltration or evapotranspiration, in which case stormwater treatment requirements can be met with biotreatment.

Appendix J provides guidance on using the Special Projects Criteria approved by the Regional Board to identify infill, high density and transit oriented projects that may receive LID treatment reduction credits.

Appendix K includes regional Soil Specifications approved by the Regional Water Board for use in stormwater biotreatment measures.

Appendix L will feature BMP Specifications for Small Projects, after these specifications become available in the latter half of 2012.

1.4 Precedence

In case of conflicting information between this handbook and the Municipal Regional Stormwater Permit (MRP), the MRP shall prevail.
Background / Regulatory Requirements

In this Chapter:
- How stormwater problems result from development
- Post-construction requirements for development projects

2.1 Stormwater Problems in Developed Areas

Throughout the country, stormwater runoff is a leading source of pollutants for water bodies that fail to meet water quality standards. In the San Francisco Bay watershed, urban and agricultural runoff is generally considered to be the largest source of pollutants to aquatic systems. Although stormwater runoff is part of the natural hydrologic cycle, human activities can alter the natural drainage patterns, introduce pollutants and increase erosion, degrading the natural habitats.

2.1.1 Stormwater Runoff in a Natural Setting

The natural water cycle circulates the earth's water from sky, to land, to sea, to sky in a never-ending cycle. In a pristine setting, soil is covered with a complex matrix of mulch, roots and pores that absorb rainwater. As rainwater infiltrates slowly into the soil, natural biologic processes remove impurities. Because most rainstorms are not large enough to fully saturate the soil, only a small percentage of annual rainwater flows over the surface as runoff. Natural vegetation tends to slow the runoff in a meandering fashion,

allowing suspended particles and sediments to settle. In the natural condition, the hydrologic cycle creates a stable supply of groundwater, and surface waters are naturally cleansed of impurities. Sediment is carried with the flow of stormwater runoff, but creeks typically find an equilibrium in which sediment is carried without impairing beneficial uses.

2.1.2 Stormwater Runoff in Urban or Urbanizing Areas

In developed areas, impervious surfaces – such as roads, parking lots and rooftops – prevent water from infiltrating into the soil. Most of the rainfall runoff flows across the surface, where it washes debris, dirt, vehicle fluids, chemicals, and other pollutants into the local storm drain systems. Once in the storm drain, polluted runoff flows directly into creeks and other natural bodies of water. Figure 2-2 contrasts the percentage of rainfall that becomes stormwater runoff in a natural and an urban setting.

![Figure 2-2: Change in volume of stormwater runoff after development. (USEPA, 2003)](image)

Not only does urban stormwater runoff wash pollutants into local waterways, but it can also cause natural creek channels to erode. When impervious surfaces are built, rainwater runs off at faster rates and in larger volumes than in the natural condition. Natural creek channels must suddenly handle much greater volumes of water traveling at much faster rates, greatly increasing the duration of erosive forces on their bed and banks. In response to these changes, creek channels enlarge by downcutting and widening. This effect is called hydrograph modification or hydromodification. Figures 2-3 and 2-4 contrast creek channels in the natural condition and creek channels subject to hydromodification.

2.2 Low Impact Development Stormwater Controls

Various permanent control measures have been developed in order to reduce the long-term impacts of development on stormwater quality and creek channels. These permanent control measures are often called post-construction stormwater controls/low impact development (LID) or post construction best management practices (BMPs) to distinguish them from the temporary construction BMPs that are used to control sedimentation and erosion while a project is being constructed. LID reduces water quality impacts by preserving and re-creating natural landscape features, minimizing imperviousness, and then infiltrating, storing, detaining, evapotranspiring (evaporating
stormwater into the air directly or through plant transpiration), and/or biotreating stormwater runoff close to its source, or onsite.

Post-construction stormwater control measures can be divided into four categories: site design measures, source control measures, stormwater treatment measures, and hydromodification management measures. Each of these categories is described below.

2.2.1 Site Design Measures
Site design measures are site planning techniques for pollution prevention and reduction in flow rates and durations, by protecting existing natural resources and reducing impervious surfaces of development projects. Some examples of site design measures include:

- Minimize land disturbance and preserve high-quality open space;
- Minimize impervious surfaces by using narrow streets, driveways and sidewalks;
- Minimize impervious surfaces that are directly connected to the storm drain system (unless the connection includes a stormwater treatment measure). One example of “disconnecting” impervious surfaces is to direct roof downspouts to splash blocks or “bubble-ups” in landscaped areas;
- Cluster structures and paved surfaces; and
- Use landscaping as a drainage feature.

2.2.2 Source Control Measures
Source control measures consist of either structural project features or operational “good housekeeping” practices that prevent pollutant discharge and runoff at the source, such as by keeping pollutants from coming into contact with stormwater. Examples of structural source controls include:

- Roofed trash enclosures,
- Berms that control run-on to or runoff from a potential pollutant source, and
- Indoor mat/equipment washracks that are connected to the sanitary sewer. (Note that any sanitary sewer connections must be approved by the local permitting authority.)
Examples of operational source controls include:

- Street sweeping and
- Regular inspection and cleaning of storm drain inlets.

2.2.3 Stormwater Treatment

Effective **December 1, 2011**, the Municipal Regional Stormwater Permit (MRP) requires stormwater treatment requirements to be met by using evapotranspiration, infiltration, rainwater harvesting and reuse. Where this is infeasible, landscape-based biotreatment is allowed. In some Special Projects, media filters and high flow rate tree well filters are allowed. See Section 2.3.1 for more information on stormwater treatment requirements and Appendix J for information on Special Projects.

Stormwater treatment measures must be sized to comply with one of the hydraulic design criteria listed in the municipal regional stormwater permit’s Provision C.3.d, which are described in Section 5.1 of this guidance document. Chapter 6 provides technical guidance specific to the following, commonly used treatment measures:

- Bioretention areas,
- Flow-through planter boxes,
- Tree well filters (effective December 1, 2011, high flow rate tree well filters are allowed only in Special Projects - see Appendix J),
- Vegetated buffer strips,
- Infiltration trenches,
- Extended detention basins,
- Green roofs,
- Pervious Paving, turf block and permeable joint paving,
- Rainwater harvesting and use, and
- Media filters (effective December 1, 2011, media filters are allowed only in Special Projects - see Appendix J).

2.2.4 Hydromodification Management Measures

Hydromodification management (HM) measures include site design and source control measures that promote infiltration or otherwise **minimize the change in the rate and flow of runoff**, when compared to the pre-development condition. HM measures also include constructed facilities (such as basins, ponds, or vaults) that manage the flow rates of stormwater leaving a site, and under some conditions can also include re-engineering of at-risk channels downstream from the site. In some cases a single stormwater treatment measure may be used to meet both the treatment and HM objectives for a project. A dual-use measure of this type is sometimes called an “integrated management practice,” or IMP.

2.3 Municipal Stormwater Permit Requirements

The development or redevelopment of property represents an opportunity to incorporate post-construction controls that can reduce water quality impacts over the life of the project. The Municipal Regional Stormwater Permit (MRP), adopted by the Water Board in October 2009, includes more prescriptive requirements for incorporating post-construction stormwater control/LID measures into new development and redevelopment projects than
the previous countywide stormwater permit. These requirements are known as Provision C.3 requirements. Download Provision C.3 and the full MRP at www.flowstobay.org (click on "Municipalities," then "NPDES Permit R-2-2009-0074 Oct142009").

Provision C.3.c establishes thresholds for which new development and redevelopment projects must comply with Provision C.3, although it also states that “all projects regardless of size should consider incorporating appropriate source control and site design measures that minimize stormwater pollutant discharges to the maximum extent practicable [MEP]…” Regardless of a project’s need to comply with Provision C.3, municipalities apply the MEP standard, including standard stormwater conditions of approval for projects that receive development permits. These conditions of approval require appropriate site design, source control measures, and, in some cases, treatment measures.

PROVISION C.3 THRESHOLDS

Thresholds for determining whether Provision C.3 applies to a project (in which case the project is a “C.3 Regulated Project”) are based on the amount of impervious surface that is created and/or replaced by a project, as described below.

- Since 2006, private or public projects that create and/or replace 10,000 or more impervious surface have been C.3 Regulated Projects.

- Effective December 1, 2011, the threshold for requiring stormwater treatment is reduced from 10,000 to 5,000 square feet of impervious surface for the following project categories: uncovered parking areas (stand-alone or part of another use), restaurants, auto service facilities1 and retail gasoline outlets.

“DEEMED COMPLETE” EXCLUSIONS

- Development applications that were “deemed complete” for review by the planning department on or after December 1, 2009, but receive final discretionary approval before December 1, 2011, are not affected by the new, additional requirements.

- Development applications that were “deemed complete” for review by the planning department on or after December 1, 2009, but receive final discretionary approval before December 1, 2011 are not affected by the additional, new requirements.

CALCULATING IMPERVIOUS SURFACE

An “impervious surface” is any material that prevents or substantially reduces infiltration of water into the soil. This includes building roofs, driveways, patios, parking lots,

1 Auto service facilities include the specific Standard Industrial Classification Codes, as follows:
5013: Wholesale distribution of motor vehicle supplies, accessories, tools, equipment, and parts.
5014: Wholesale distribution of tires and tubes for passenger and commercial vehicles.
7532: Repair of automotive tops, bodies, and interiors, or automotive painting and refinishing.
7533: Installation, repair, or sale and installation of automotive exhaust systems.
7534: Repairing and retreading automotive tires.
7536: Installation, repair, or sales and installation of automotive glass.
7537: Installation, repair, or sales and installation of automotive transmissions.
impervious decking, streets, sidewalks, and any other continuous watertight pavement or covering. Impervious surface is calculated in terms of square feet or acres. When calculating the area of building roofs, be sure to include not only the footprint of the main building or structure, but also any garages, carports, sheds, or other miscellaneous structures.

Pervious paving is not considered an impervious surface, as long as it is underlain with a pervious storage material (such as gravel) that holds at least the Provision C.3.d volume of rainfall runoff. Open, uncovered retention/detention facilities are not considered impervious surfaces for purposes of determining whether a project is a Regulated Project, but they are considered impervious surfaces for purposes of runoff modeling and meeting the Hydromodification standard. The municipalities use an "Impervious Surface Form" to help applicants with these calculations. Contact your local jurisdiction for its impervious surface form.

EXCLUSIONS FROM PROVISION C.3
Provision C.3.c of the MRP excludes specific types of projects from the C.3 requirements (see Table 2-1), even if they meet the threshold limits explained above.

<table>
<thead>
<tr>
<th>Project Category</th>
<th>Excluded Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial, industrial, residential or other development</td>
<td>Detached single-family home projects that are not part of a larger plan of development.</td>
</tr>
<tr>
<td>Road Projects</td>
<td>Widening of roadways that does NOT add one or more new lanes of travel; impervious trails with a width of 10 feet or less and located more than 50 ft from top of creek banks; sidewalks, bicycle lanes and trails that are NOT built as part of new roadways or are constructed with permeable surfaces; bicycle lanes hydraulically separated from the roadway and sidewalks and impermeable trails that drain runoff to adjacent vegetated areas.</td>
</tr>
<tr>
<td>Redevelopment projects (including pavement resurfacing)</td>
<td>Interior remodels and routine maintenance or repair, such as roof or exterior wall surface replacement; or pavement resurfacing within the existing footprint.</td>
</tr>
</tbody>
</table>

Source: San Francisco Bay Regional Water Quality Control Board, October 2009

2.3.1 What is Required by Provision C.3?
Projects that are subject to Provision C.3 (C.3 Regulated Projects) must implement:
- Site design measures,
- Source control measures, and
- Low impact development (LID) treatment measures.

What Are C.3 Regulated Projects? Except for the excluded projects listed in Table 2-1, projects that create and/or replace 10,000 square feet or more of impervious surface are C.3 Regulated Projects. Effective December 1, 2011, projects that consist of restaurants,
auto service facilities, retail gasoline outlets, and surface parking areas (stand-alone or part of another use) that create and/or replace 5,000 square feet or more of impervious surface are also C.3 Regulated Projects.

What Are LID Treatment Measures? The MRP identifies two tiers of LID treatment. The preferred tier of LID treatment consists of approaches that retain stormwater on the site, instead of releasing treated water to the storm drain. The top tier of LID treatment consists of evapotranspiration, infiltration, and/or rainwater harvesting and use. C.3 Regulated Projects must evapotranspire, infiltrate or harvest and use amount of stormwater runoff specified in MRP Provision C.3.d, unless this is infeasible as defined by criteria and procedures in Appendix I. When the three preferred types of LID treatment are infeasible, biotreatment is allowed (see below). In some limited cases, LID treatment reduction is allowed for certain smart growth, high density or transit-oriented development Special Projects, described below. Treatment measures must be hydraulically sized as specified in MRP Provision C.3.d.

Biotreatment – Second Tier LID. Biotreatment is the second tier of LID treatment. Biotreatment measures are designed to filter stormwater through soil and then release some or all of the treated water to the storm drain system. In locations where infiltration should be avoided (steep slopes, high groundwater table, etc.) the biotreatment measure should be lined with an impermeable liner, or placed in a concrete planter box. In all other locations, infiltration should be maximized as illustrated in Figure 2.5. Soils in biotreatment measures must have a long-term infiltration rate of 5 to 10 inches per hour, in accordance with the soil specifications approved by the Regional Water Board in Appendix K. Biotreatment systems must also have a surface area no smaller than what is required to accommodate a 5 inches per hour stormwater runoff surface loading rate. Biotreatment systems include an underdrain in a rock layer below the engineered soil.

When Do Bioretention Areas Provide Preferred-Tier Treatment? Bioretention areas function as preferred-tier treatment measures in locations where the soil hydraulic conductivity rate is 1.6 inches per hour or higher, because in these soil conditions, the amount of runoff specified in Provision C.3.d is fully treated by evapotranspiration and
infiltration. In other locations, bioretention areas function as biotreatment measures, since only some of the C.3.d amount of runoff is treated with evapotranspiration and infiltration.

Special Projects. LID treatment requirements are reduced for certain smart growth, high density, or transit-oriented development Special Projects. If a project meets the Special Projects criteria provided in Appendix J, specific non-LID treatment measures may be used to treat a percentage of the total C.3.d amount of stormwater runoff that requires treatment. Two types of non-LID treatment measures are allowed in Special Projects: high flow rate tree well filters and high flow rate media filters. See Appendix J for criteria and procedures for identifying Special Projects and calculating the LID treatment reduction.

“DEEMED COMPLETE” EXCLUSIONS
- Development applications “deemed complete” for review by the planning department before December 1, 2009, and “diligently pursued” by the project applicant are not affected by the requirements that are effective December 1, 2011.
- Development applications that were “deemed complete” for review by the planning department on or after December 1, 2009, but receive final discretionary approval before December 1, 2011 are not affected by the additional, new requirements.

HYDROMODIFICATION MANAGEMENT REQUIREMENTS
Projects that create and/or replace one acre or more of impervious surface must incorporate hydromodification management measures, if the project is located in an area susceptible to hydromodification (shown in a map in Appendix H), and if the amount of impervious surface area is increased above pre-project conditions.

REDEVELOPMENT PROJECTS
If your project is located on a previously developed site and will result in the replacement of impervious surface, then it is considered a redevelopment project and the following special provisions apply to it:
- **“50 Percent Rule:”** Redevelopment projects that replace 50 percent or less of existing impervious surface need to treat stormwater runoff only from the portion of the site that is redeveloped. Redevelopment projects that replace more than 50 percent of the existing impervious surface are required to treat runoff from the entire site.
- A project that does not increase impervious surface over the pre-project condition is not an HM project.

ALTERNATIVE COMPLIANCE
The municipal stormwater permit allows projects to use “alternative compliance,” to meet stormwater treatment requirements offsite. See Chapter 9 for more information.

How Do Projects Meet the C.3 Requirements?
The project’s development permit application submittals must include detailed information showing how the Provision C.3 stormwater requirements will be met.

2 Diligent pursuance may be demonstrated by the project applicant’s submittal of supplemental information to the original application, plans, or other documents required for any necessary approvals of the project.
Chapter 3 provides step-by-step instructions for incorporating C.3 stormwater submittals into your permit applications.

2.3.2 Upcoming C.3 Requirements

Upcoming stormwater requirements for development projects are described below. The schedule of implementation is shown in Figure 2-6. Beginning December 1, 2012, all projects which create and/or replace 2,500 sq. ft. to 10,000 sq. ft., including detached single-family residences that are not part of a larger plan of development, must implement one or more of the following:

- Direct roof runoff into cisterns or rain barrels for reuse.
- Direct roof runoff onto vegetated areas.
- Direct runoff from sidewalks, walkways, and/or patios onto vegetated areas.
- Direct runoff from driveways and/or uncovered parking lots onto vegetated areas.
- Construct sidewalks, walkways, and/or patios with permeable surfaces.
- Construct bike lanes, driveways, and/or uncovered parking lots with permeable surfaces.

The Countywide Program is participating in regional collaboration to prepare standard specifications for stormwater controls for projects that create and/or replace 2,500 to 10,000 square feet of impervious surface, and individual single family homes that create and/or replace 2,500 square feet or more of impervious surface.

2.4 Regulatory Authority

The Countywide Program’s municipalities derive their authority to regulate stormwater quality and hydrograph modification impacts from their stormwater ordinances. Each municipal stormwater ordinance may have unique elements, but they provide the municipalities the authority to implement the municipal regional stormwater permit, including the requirements of Provision C.3 as described above. Violations of a municipal stormwater ordinance may be subject to civil actions such as:

- Temporary and/or permanent injunction;
- Assessing costs of any investigation or inspection to establish the violation and bring legal action;
- Costs incurred in removing, correcting, or terminating adverse effects of the violation;
- Compensatory damages for loss or destruction to water quality, wildlife, fish and aquatic life;
- Order to cease and desist a violation;
- Notice to remove waste or other material that may result in an increase in pollutants entering the stormwater drainage system; and
- Arrest or citation of persons violating the stormwater ordinance.
December 2010
Stormwater Programs propose Special Projects definition/descriptions for Water Board approval.

December 2010
Stormwater Programs biotreatment soil specifications to the Water Board.

May 2011
Stormwater Programs propose specifications for green roofs to be considered as biotreatment systems.

May 2011
Stormwater Programs submit to Water Board report on proposed feasibility/infeasibility criteria for evapotranspiration, infiltration, and rainwater harvesting/use.

December 2011
Regulated Projects are allowed the option of using alternative compliance in lieu of onsite stormwater treatment or use of a joint stormwater treatment facility.

December 2011
Regulated Projects that do not meet stormwater treatment requirements onsite or in a joint stormwater facility must use alternative compliance.

December 2011
Projects in Special Land Use categories that create and/or replace 5,000 square feet or more of impervious surface must implement stormwater treatment requirements.

December 2011
Regulated Projects that do not meet stormwater treatment requirements onsite or in a joint stormwater treatment facility must use alternative compliance.

December 2012
Projects creating and/or replacing 2,500 square feet or more of impervious surface, but less than 10,000 square feet of impervious surface, and all single family home projects creating 2,500 square feet or more of impervious surface must implement site design measures specified in Provision C.3.i.

Figure 2-6: Timeline for Implementing New Provision C.3 Requirements
Preparing Permit Application Submittals

In this Chapter:
- Outline of the development review process
- Step-by-step instructions for preparing C.3 stormwater submittals for planning and building permit applications

3.1 The Development Review Process

The municipalities have integrated their review of post-construction stormwater controls into the development review process. If the C.3 requirements apply to your project, your planning permit application submittal must show how you have incorporated the required post-construction stormwater controls. Section 3.2 gives step-by-step instructions on how to do this, beginning at the earliest phases of project planning. Some smaller projects may not require planning permits; see Section 3.4 for simple instructions for small sites.

Preparing the preliminary design of stormwater controls simultaneously with the preliminary site plan and the landscaping plan is advised to achieve the following benefits:
- Maximize the stormwater benefits of project landscaping.
- Improve site aesthetics and produce a better quality project.
- Speed project review times.
- Avoid unnecessary redesign.
- Reduce overall project costs.

After the municipality issues your planning permit, you will need to incorporate the required stormwater information into your building permit application submittal. Section 3.3 gives step-by-step instructions for preparing this submittal. A simplified diagram of a sample development review process is shown in Figure 3-1. Please note that the actual development review process in any of the municipalities may differ from the example.
Although the development review process may vary from one municipality to the next, Figure 3-1 highlights the steps in the development review process where municipalities typically require submittals showing how your project incorporates post-construction stormwater controls. These submittals are incorporated into your planning permit and building permit applications. Remember that the C.3 submittals show how the project will
incorporate post-construction stormwater controls, to reduce pollutant loading and prevent increases in creek channel erosion during the life of the project. The municipality will require you to prepare separate documents to show how sedimentation and erosion will be controlled during construction. Sections 3.2 and 3.3 presents step-by-step instructions for preparing C.3 stormwater submittals for planning and building permit applications.

3.2 How to Prepare Planning Permit Submittals

The Countywide Program has developed two checklists that the municipalities may use to identify the requirements for post-construction stormwater controls that apply to your project at this phase in project development. The NPDES Permit Compliance Checklist may be used to identify specific requirements regarding the types of site designs, source controls, treatment measures and hydrograph modification measures that should be incorporated in the project. Municipal staff also use this checklist to identify erosion and sediment controls that will be required during construction of the project.

The Planning Permit Submittal Checklist is provided below to help identify the C.3 stormwater-related items that you will need to submit with your planning permit application. Please note that it’s important to contact the planning staff of your local jurisdiction to discuss the specific requirements that may apply to your project. After you have a complete list of submittal requirements, you can use the Step-by-Step instructions in this section to prepare your submittal. Applicants with smaller projects (between 10,000 sq. ft. up to one acre) are encouraged to read Section 3.4, “Simple Instructions for Small Sites,” before using the Step-by-Step instructions.

3.2.1 The Planning Permit Submittal Checklist

Table 3-1 presents a checklist of C.3 post-construction stormwater/low impact development information that is typically submitted with planning permit applications. Please note that if runoff from your site discharges directly to a creek or wetland without flowing through a municipality-owned storm drain, you may need to submit additional information. Municipal staff may use this checklist to determine whether your submittal is complete, or some jurisdictions may use a modified checklist. The items included in this checklist are important to demonstrate that your project will:

- Incorporate site design measures to reduce impervious surfaces, promote infiltration and reduce water quality impacts;
- Apply source control measures to keep pollutants out of stormwater runoff;
- Use stormwater treatment measures to remove pollutants from stormwater; and
- Where applicable, manage hydromodification (erosion-inducing flows) by reducing the rate and amount of runoff.

C.3 submittals show how the project will reduce pollutant loading and prevent increases in creek channel erosion during long-term project operations. You will need to prepare separate documents to show how sedimentation and erosion will be controlled during construction.
<table>
<thead>
<tr>
<th>Information on Project Drawings</th>
<th>Corresponding Planning Step (Section 3.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required?</td>
<td>Information on Project Drawings</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Written Information on Municipal Forms or in Report Format

<table>
<thead>
<tr>
<th>Information on Project Drawings</th>
<th>Corresponding Planning Step (Section 3.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ Every item is not necessarily required for a project. Municipal staff may check the boxes in the “Required” column to indicate items required for a project.

² Site design and treatment measures that promote stormwater infiltration should be consistent with recommendations of the project geotechnical engineer based on the soils boring data, drainage pattern and the current requirements for stormwater controls.
3.2.2 Planning Permit Submittals: Step-by-Step
Step-by-step instructions are offered below to help incorporate post-construction stormwater controls into your project from the very beginning of permit planning. The step-by-step instructions are intended to help you prepare the materials you will need to submit along with the planning permit application.

PLANNING PERMIT SUBMITTAL

Step 1: Collect Needed Information
Collecting the appropriate information is essential to selecting and siting post-construction stormwater measures. A list of the most commonly needed information is provided below, but municipal staff may request additional information as well.

- **Existing natural features**, especially hydrologic features including creeks, wetlands, watercourses, seeps, springs, ponds, lakes, areas of 100-year floodplain, and any contiguous natural areas. This information may be obtained by site inspections, a topographic survey of the site, and existing maps such as US Geologic Survey (USGS) quadrangle maps, Federal Emergency Management Agency (FEMA) floodplain maps, US Fish and Wildlife Service (USFWS) wetland inventory maps, and the Oakland Museum of California Creek & Watershed Maps (www.museumca.org/creeks).

- **Existing site topography**, including the general direction of surface drainage, local high or low points or depressions, any steep slopes, outcrops, or other significant geologic features. This may be obtained from topographic maps and site inspections.

- **Existing site drainage**. For undeveloped sites, this would be identified based on the topographic information described above. For previously developed sites, information on drainage and storm drain connections may be obtained from municipal storm drain maps, plans for previous development, and site inspections.

- **Soil types** (including hydrologic soil groups) and **depth to groundwater**. If a soils report is not required for the project, planning-level information may be obtained from the Natural Resources Conservation Service (NRCS) Soils Survey. This information is used in determining the feasibility of onsite infiltration of stormwater. For additional information on soil types, see Appendix E – Infiltration Guidelines.

- **Existing impervious areas**. Measuring the area of existing impervious surface is necessary to calculate the amount of impervious surface that will be replaced. The countywide NPDES municipal stormwater permit requires that redevelopment projects that replace 50 percent or more of impervious surface treat the stormwater runoff from the entire site, not just the redeveloped area. If less than 50 percent of existing impervious surface is replaced, and the existing development was not subject to stormwater treatment measures, then only the affected portion must be included in treatment measure design.

- **Zoning** information, such as setback and open space requirements.

Review the information collected in Step 1. Identify the principal constraints on site design and stormwater treatment measure selection, as well as opportunities to reduce imperviousness and incorporate stormwater controls into the site and landscape design. For example, **constraints** might include impermeable soils, high groundwater, steep slopes, geotechnical instability, high-intensity land use, heavy vehicular traffic, or safety...
concerns. **Opportunities** for siting stormwater controls might include existing natural areas, low areas, oddly configured of otherwise unbuildable parcels, landscape amenities including open space and buffers (which can double as locations for stormwater treatment measures) and differences in elevation (which can provide hydraulic head for moving stormwater runoff through treatment measures). Preparing a table or brief written summary of constraints and opportunities can prove helpful in selecting and siting stormwater controls.

PLANNING PERMIT SUBMITTAL

Step 2: Minimize Site Disturbance and Protect Sensitive Areas

Design the site layout to minimize changes to the natural topography. Using information collected in Step 1, identify any existing sensitive natural resources on the site to protect and preserve from development. These may include the following types of areas:

- Development should be set back from **creeks and riparian habitat** as required by the local jurisdiction. If your project involves impacts to creeks and riparian habitat, you will need to obtain approvals from a number of resource protection agencies, including but not limited to the San Francisco Bay Regional Water Quality Control Board and the California Department of Fish and Game. Guidance for obtaining these approvals is provided in San Mateo County’s *Guide to Creek and Wetland Project Permitting*, at http://www.flowstobay.org/pdfs/bmp/Construction%20Series/creek_wetland.pdf. Go to http://sfep.abag.ca.gov/projects/JARPA/JARPA.html for information on creek and wetland permits, and the required Joint Aquatic Resources Permit Application (JARPA).

- If the project includes **wetlands** subject to Section 404 of the federal Clean Water Act, or habitat for **special-status species** protected by federal or State laws, these areas should be indicated, and evidence should be provided to demonstrate compliance with the applicable laws. See the above reference to the *Guide to Creek and Wetland Project Permitting* and the JARPA website.

- The project will need to comply with any local tree preservation ordinances and other policies protecting **heritage or significant trees**. Mature trees offer substantial stormwater benefits, and their preservation is recommended, where feasible, even if it is not required by law.

- The project needs to comply with any local restrictions on development of **steep slopes** and soils that are susceptible to **erosion**. Even where not required by law, the avoidance of such areas is advisable in order to reduce stormwater impacts.

PLANNING PERMIT SUBMITTAL

Step 3: Incorporate Site Design Measures

Design the project to minimize the overall coverage of paving and roofs, with a special focus on reducing the amount of impervious area that is directly connected to the storm drain system. Using site design measures to reduce impervious surfaces on your site can **reduce the size of stormwater treatment measures** that you will need to install. But remember: even vegetated areas will generate some runoff. If runoff from landscaped areas flows to a stormwater treatment measure, that treatment measure will need to be
sized to handle these relatively small amounts of runoff, as well as runoff from impervious surfaces. Using self-treating areas (described below) can reduce the size of treatment measures even further.

Figure 3-2 provides an example of a site design measure. More photos of site design measures are in the countywide Guidebook of Post-Construction BMP Examples at: www.flowstobay.org (click on Business, then New Development, then scroll to Developments Protecting Water Quality: A Guidebook of Low Impact Development Examples). More information on site design measures is provided in Chapter 4, along with technical guidance for green roofs, pervious paving, unit pavers and turf block. A range of site design examples are described in the following list:

- **Use alternative site layout techniques** to reduce the total amount of impervious area. This may include designing compact, multi-story structures or clustering buildings. Some cities may allow narrow streets and (in very low-density neighborhoods) sidewalks on only one side of the street.

- **Minimize surface parking** areas, in terms of the number and size of parking spaces.

- **Use rainwater as a resource.** Capturing and retaining roof runoff in cisterns can be a practical way to reduce the amount of runoff from the site and store rainwater for use in on-site irrigation. Stormwater storage provided by cisterns may be used to reduce the amount of stormwater that must be treated and, where applicable, retained on-site to meet hydromodification management requirements.

- **Use drainage as a design element.** Bioretention areas, depressed landscape areas, vegetated buffers, and flow-through planters can serve as visual amenities and focal points in the landscape design of your site.

- **Maximize choices for mobility.** Motor vehicles are a major source of pollutants in stormwater runoff. Projects should promote, or at least accommodate, modes of transportation other than the automobile.

- **Include alternative, pervious surfaces.** **Green roofs** can partially or fully replace traditional roofing materials. **Pervious surfaces** such as crushed aggregate, turf block, unit pavers, or pervious paving may be appropriate for sidewalks, parking lots, and low-volume residential areas.

- **Identify self-treating areas.** Some portions of your site may provide “self-treatment” if properly designed and drained. Such areas may include conserved natural spaces, large landscaped areas, and areas of turf block. These areas are considered “self-treating” because infiltration and natural processes
that occur in these areas remove pollutants from stormwater. As long as the self-
treating areas do not receive runoff from impervious areas on the site and
integrated pest management is used, your drainage design may direct the runoff from
self-treating areas directly to the storm drain system or other receiving water. More
information on self-treating areas is given in Section 4.2.

- Direct runoff to depressed landscaped areas. You may be able to design an area
 within your site to function as a “self-retaining area” or “zero discharge area” in which the
 amount of stormwater runoff that is required to be treated is infiltrated or retained in
depressed landscaped areas. A 2:1 ratio of impervious area to the receiving pervious
area may be acceptable, where soils permit. Much higher ratios are possible if the
runoff is directed to a bioretention area or other landscape-based treatment measures.
More information is provided in Section 4.3.

PLANNING PERMIT SUBMITTAL

Step 4: Measure Pervious and Impervious Surfaces

Stormwater treatment is required for projects that create and/or replace 10,000 square
feet or more of impervious surface – with some exceptions that are listed in Chapter 2.
Effective December 1, 2011, the threshold for requiring stormwater treatment is reduced
from 10,000 to 5,000 square feet, or more, of impervious surface for the following project
categories: uncovered parking areas (stand-alone or part of another use), restaurants, auto
service facilities, and retail gasoline outlets. The 5,000 square foot threshold will not apply if
a) the project was deemed complete on or before December 1, 2009, and the applicant has
diligently pursued the project; b) the project is deemed complete after December 1, 2009,
but receives final discretionary approval before December 1, 2011; and/or c) it is a public
project for which funding has been committed and construction is scheduled to begin by
December 2, 2012.

Hydromodification management (HM) is required for projects that create and/or replace one
acre or more of impervious surface, result in more impervious surface in the post-project
condition than in pre-project conditions, AND are located in susceptible areas identified in
the Hydromodification Management Susceptibility Map (see Appendix H). Chapter 7
describes this map and provides more information on HM.

1 Auto service facilities include the specific Standard Industrial Classification Codes, as follows:
5013: Wholesale distribution of motor vehicle supplies, accessories, tools, equipment, and parts.
5014: Wholesale distribution of tires and tubes for passenger and commercial vehicles.
7532: Repair of automotive tops, bodies, and interiors, or automotive painting and refinishing.
7533: Installation, repair, or sale and installation of automotive exhaust systems.
7534: Repairing and retreading automotive tires.
7536: Installation, repair, or sales and installation of automotive glass.
7537: Installation, repair, or sales and installation of automotive transmissions.
7538: General automotive repair.
7539: Specialized automotive repair such as fuel service, brake relining, front-end and wheel alignment, and radiator
repair.

2 Diligent pursuance may be demonstrated by the project applicant’s submittal of supplemental information to the
original application, plans, or other documents required for any necessary approvals of the project by the reviewing
jurisdiction.
As part of the planning permit application submittal, you will need to complete the *Impervious Surface Form* that is provided by the local jurisdiction. This form is used to calculate the amount of impervious surface that will be created and/or replaced, and determine whether treatment and/or HM measures are required. Impervious surfaces are those areas where development prevents water from infiltrating into the ground and results in runoff. Impervious surfaces include but are not limited to:

- Footprints of all buildings and structures and their eave overhangs, including garages, carports, sheds, etc.;
- Driveways, patios, parking lots, decking; and
- Streets and sidewalks.

Areas of pervious paving that are underlain with pervious soil or pervious storage material, such as a gravel layer sufficient to hold at least the Provision C.3.d volume of rainfall runoff are not considered impervious surfaces, and are excluded from the calculation of impervious surfaces.

Projects that create *less than 10,000 square feet* of impervious surface need to include stormwater treatment measures (Steps 5, 6, and 7) to the maximum extent practicable – and the Provision C.3 numeric sizing criteria may not apply. Check with the local jurisdiction to determine whether Steps 5 through 7 will apply to your project.

PLANNING PERMIT SUBMITTAL

Step 5: Determine if Special Projects LID treatment reduction credits apply

LID treatment reduction credits can be applied to smart growth, high density or transit oriented development projects that meet specific criteria for the Special Projects included in Appendix J. Contact municipal staff to determine whether your project meets the criteria to be considered a Special Project.

PLANNING PERMIT SUBMITTAL

Step 6: Determine if New Low Impact Development (LID) Requirements apply

Stormwater treatment requirements must be met using evapotranspiration, infiltration, and/or rainwater harvesting and reuse. Where this is infeasible, biotreatment measures may be used. Refer to Appendix I for the feasibility worksheets and guidance based on regional criteria and procedures in order to determine feasibility at a site.

PLANNING PERMIT SUBMITTAL

Step 7: Select Treatment/HM Measures

Effective December 1, 2011, stormwater treatment must be accomplished with infiltration, evapotranspiration, and rainwater harvesting and use, unless this in infeasible, based on criteria provided in Appendix I, in which case landscape-based “biotreatment” measures may be used. Chapter 6 provides technical guidance for specific types of stormwater treatment measures that are commonly used in San Mateo County. While other treatment measures may be approved, it may be possible to expedite the review of your project by closely following the guidance provided in Chapter 6.
Selecting the appropriate treatment measure(s) for a specific site is a matter of professional judgment. Some general factors to consider are offered below:

- **Effective December 1, 2011,** vault-based systems are allowed only in a limited number of locations and types of development (see Appendix J).

- Is **Hydromodification management** (HM) required? If your project needs to meet both treatment and HM requirements, to the extent feasible, it is recommended that stormwater control measures be designed to meet both treatment and HM needs. HM detention requirements are likely to exceed the volume required for treatment, and may also need to be coordinated with separate requirements for flood control detention.

- **Soil suitability.** Soils are classified into four hydrologic soil groups – A, B, C, and D – with the soils in each group having similar runoff potential under similar storm and cover conditions. Group A soils generally have the lowest runoff potential, and group D have the greatest. Treatment measures that rely primarily on infiltration, such as infiltration trenches, are generally unsuitable for use in group D soils (clay loam, sandy clay and clay) and have the potential to fail in group C (silt loam) soils. Bioretention areas installed in group C and D soils typically require subdrains.

- **Site slope.** LID treatment measures need to be carefully selected and designed for use on steep slopes, because infiltration of stormwater runoff can cause geotechnical instability. Depending on site conditions, it may be possible to design bioretention areas using check dams for projects on sites with some slope constraints.

- Considerations for **larger sites.** Some sites may have sufficient space for stormwater runoff could to be routed one or more cisterns and used for non-potable uses, such as irrigation or flushing toilets (**rainwater harvesting and use**). Alternatively, smaller stormwater treatment measures may be dispersed throughout the site.

- Consider **maintenance requirements.** The amount of maintenance that a stormwater treatment measure will require should be considered when selecting treatment measures. As described in Section 3.3, you will need to prepare and submit a **maintenance plan** for stormwater treatment measures with the building permit application. Section 8.2 provides information about the maintenance requirements for various treatment measures.

- **Avoid mosquito problems.** Mosquito control guidance provided in **Appendix F** needs to be implemented for all stormwater treatment measures, with special consideration given to treatment measures that are designed to include standing water. Underground mechanical systems can be particularly problematic because many retain water that is not visible from the surface. Project plans that include stormwater treatment measures (and their maintenance plans), are routed to the San Mateo County Mosquito Abatement District for review. You may consider consulting with Mosquito Abatement District staff for guidance.

3 Details of this soil classification can be found in the National Soil Survey Handbook, Part 618.35 (USDA, 2006), http://soils.usda.gov/technical/handbook.
Potential for groundwater contamination. Before selecting an infiltration device, such as an infiltration trench, infiltration basin, or French drain, review the infiltration considerations presented in Appendix E to protect groundwater from contamination by pollutants in stormwater runoff.

PLANNING PERMIT SUBMITTAL

Step 8: Locate Treatment/HM Measures on the Site

Review the existing and proposed site drainage network and connections to drainage offsite, which were collected in Step 1. Selecting appropriate locations for treatment and HM measures involves a number of important factors, including the following:

- **Design for gravity flow.** If at all possible, treatment/HM measures should be designed so that drainage into and out of the treatment measure is by gravity flow. This promotes effective, low-maintenance operation and helps avoid mosquito problems. Pumped systems can be feasible, but they are more expensive, require more maintenance, and can introduce areas with standing water that attract mosquito breeding.

- **Determine final ownership and maintenance responsibility.** All treatment measures should be available for ready access by maintenance workers, inspectors from the local municipality, and staff from the San Mateo County Mosquito Abatement District. If the property will be subdivided, be sure to locate shared treatment measures in a common, accessible area – not on a private residential lot.

- **Incorporate treatment measures in the landscape design.** Almost every project includes landscaped areas. Most zoning districts require a certain amount of open space, and some require landscaped setbacks or buffers. It may be possible to locate some or all of your projects' treatment/HM measures within required landscape areas.

- **Plan for maintenance.** Stormwater treatment measures will need to be accessible to the largest piece of equipment that will be needed for maintenance. For example, bioretention areas and vegetated buffer strips need access for the types of machinery used for landscape maintenance. Large extended detention basins need to have a perimeter access road accessible by heavy vehicles for sediment removal and control of emergent vegetation. Underground treatment measures and media filters may require special equipment for periodic cleanout and media replacement.

PLANNING PERMIT SUBMITTAL

Step 9: Preliminary Design of Treatment/HM Measures

Perform preliminary design of the stormwater treatment measures you have selected using the hydraulic sizing criteria in Section 5.1 and the technical guidance for specific types of
treatment measures in Chapter 6. The technical guidance in this handbook is compatible with the Bay Area Hydrology Model (BAHM), a tool for sizing HM measures, developed by SMCWPPP in cooperation with the Santa Clara Valley Urban Runoff Pollution Prevention Program and the Alameda Countywide Clean Water Program. The BAHM may be downloaded at www.bayareahydrologymodel.com. See Chapter 7 for more information on the BAHM and the design of HM measures.

Detailed construction drawings are typically not required for planning permit submittals, but drawings or sketches need to be included to illustrate the proposed design and sizing information based on runoff calculations.

PLANNING PERMIT SUBMITTAL

Step 10: Consider Planting Palettes for Treatment Measures

The selection of appropriate plant materials is an important part of designing a successful LID stormwater treatment measure. Plants need to be hardy, low-maintenance, and tolerant of saturated soils. Although irrigation systems are typically required for landscape-based stormwater treatment measures, selecting plants that can survive long periods with little or no rainfall will help reduce irrigation requirements. At the planning permit phase of the project a detailed planting plan is typically not required, but many municipalities require a conceptual planting palette. Appendix A provides guidance regarding the selection of plant materials for landscape-based treatment measures, including information about Bay-Friendly Landscaping. Bay-Friendly Landscaping Guidelines are available at www.bayfriendly.org.

PLANNING PERMIT SUBMITTAL

Step 11: Prepare a Preliminary Maintenance Plan (if required)

A stormwater treatment measure maintenance plan describes how stormwater treatment measures will be maintained during the years and decades after construction is completed. In some cases a municipality may require the submittal of a preliminary maintenance plan as part of the planning permit submittal. Otherwise, a maintenance plan is required only as part of the building permit submittal. Check with your local jurisdiction regarding the requirements for your project.

A preliminary maintenance plan identifies the proposed maintenance activities, and the intervals at which they will be conducted, for each stormwater treatment measure included in the project. As part of the building permit submittal, applicants will also need to provide additional information that will be included in a maintenance agreement between the local municipality and the property owner. Chapter 8 provides more information about stormwater treatment measure operation and maintenance, including guidance on how to prepare a maintenance plan. Maintenance plan templates for various types of stormwater treatment measures are included in Appendix G.

PLANNING PERMIT SUBMITTAL

Step 12: Use Applicable Source Control Measures

Pollutants are generated by many activities that will occur after construction is completed. Each local jurisdiction has specific pollutant source control requirements for projects that include landscaping, swimming pools, vehicle washing areas, trash/recycling areas, and
other potential sources of pollutants. These requirements are identified in the agency’s *Local Source Control Measures List*. Be sure to obtain the current list from your local jurisdiction. The lists typically focus on *structural source controls*: permanent features that are designed and constructed as part of a project, such as sanitary sewer connections for restaurant wash areas that are large enough to wash the largest piece of equipment. The municipality may also require your project to commit to implementing operational source controls: “good housekeeping” activities that must be conducted routinely during the operations phase of the project, such as street sweeping and cleaning storm drain inlets.

Your project will need to incorporate the applicable source controls for any project activity that is included in the local source control list. The following methods may be used to accomplish this.

- **Review** structural source controls in Part I of the local list and compare this list to your site plan. Identify any areas on the site that require structural source controls. Remember that some activities may not have been sited yet. For example, the Model List includes a requirement for enclosing and roofing refuse storage areas. If a designer was unaware of this requirement, it may not be shown on the project plans.
- **Incorporate** all the required structural source controls on your project drawings.
- **If required by the municipality**, prepare and submit a table, listing in three columns the potential sources of pollutants, the permanent source control measures, and any operational source control measures from Part II of the local list that apply to the project.

Table 3-2 is a Table of Example Source Controls.

<table>
<thead>
<tr>
<th>Potential Source of Pollutants</th>
<th>Structural Source Controls</th>
<th>Operational Source Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site storm drains</td>
<td>On-site storm drains shall be marked with the words “No Dumping! Flows to Bay” (or applicable water body) applied with thermoplastic.</td>
<td>All on-site storm drain inlets shall be cleaned at least once a year immediately prior to the rainy season.</td>
</tr>
<tr>
<td>Refuse areas</td>
<td>New or redevelopment projects, such as food service facilities, recycling facilities or similar facilities, shall provide a roofed and enclosed area for dumpsters and recycling containers. The area shall be designed to prevent water run-on to the area and runoff from the area to contain litter and trash, so that it is not dispersed by the wind or runoff during waste removal.</td>
<td>None</td>
</tr>
</tbody>
</table>

NOTE: This is included as an example only and is not intended for use in an actual submittal.

PLANNING PERMIT SUBMITTAL

Step 13: Coordinate with Other Project Requirements

When submitting the C.3 stormwater drawings with the planning permit submittal, the stormwater site design, source control, treatment and HM measures may be shown on a separate stormwater plan, or combined with the site plan, landscaping plan, or drainage plan – depending on the complexity of the project. Whether plans are combined or separate, there are a number of issues that must be carefully coordinated with other aspects of the project design. Some typical coordination considerations are listed below.
• **Balance of Cut and Fill.** When calculating the overall project balance of cut and fill, be sure to include the excavation of stormwater treatment measures (including the need to replace existing clay soils with group A or B soils).

• **Soil Compaction during Construction.** Compaction from construction traffic can severely restrict the infiltration capacity of soils at your site. In the construction staging plan, protect and limit operation in those portions of the site that will be used for self-treatment or stormwater treatment measures that rely on infiltration.

• **Building Drainage.** Building codes require that drainage from roofs and other impervious areas be directed away from the building. The codes also specify minimum sizes and slopes for roof leaders and drain piping. Any stormwater measure located in or on the building, or that may affect building foundations, must be designed to meet the minimum building code requirements. Stormwater treatment measures are also required to meet the requirements for detention or flow described in Section 5.1.

• **Control of Elevations.** Getting runoff to flow from impervious surfaces to landscaped surfaces may require greater attention to detailed slopes and elevations in grading and landscaping plans. For example:
 - **Provide Adequate Change in Elevation** between the pavement and vegetated areas. The landscaped area needs to be low enough so that runoff will flow into it even after the turf or other vegetation has grown up. If an adequate drop in elevation is not provided, runoff will tend to pond on the edge of the paved surface.
 - **Provide for Differential Settlement.** While the soil in landscaped-based stormwater treatment measures and self-treating areas must be left loose and uncompacted, concrete structures (such as inlets and outlets) must be supported on a firm foundation. Otherwise they may settle more than the surrounding ground, creating depressions that can hold standing water and contribute to nuisances such as mosquito breeding.
 - **Prevent Erosion.** There is potential for erosion to occur at points where the stormwater runoff flows from impervious areas into landscape-based treatment measures. Include in project plans any proposed erosion controls, such as cobbles or splash blocks.

• **Drainage Plans.** The local building or engineering department may require a drainage plan, which typically focuses on preventing street flooding during a 10-year storm and demonstrating that flooding from 100-year storms can be managed. To meet the drainage plan requirements it may be necessary to include high flow bypasses in the design of stormwater treatment measures, in order to route flood flows directly to the storm drain system. More information on this topic is provided in Section 5.6. Check with your local jurisdiction regarding the need to prepare a drainage plan, and whether it is required only as part of the building permit submittal, or if a preliminary drainage plan is needed with the planning permit submittal.

Figure 3-4: Cobbles help prevent erosion as stormwater enters treatment measure at Legacy Tech Park in San Jose. (Photo credit: RBF Consulting)
• **Signage for Traffic and Parking.** If your project includes depressed landscaped areas next to parking lots, driveways or roadways, it may be necessary to include bollards, striping or signs to guide traffic, particularly if curbs are designed to be flush with the pavement. Traffic striping may not be practical for permeable pavements such as crushed aggregate and unit pavers. In these areas signs and bollards may be needed to help direct traffic.

PLANNING PERMIT SUBMITTAL

Step 14: Submit Planning Permit Application

Assemble all the items listed in Table 3-1 that municipal staff indicates are required for your project, and include them as attachments to the planning permit application for your project.

3.3 How to Prepare Building Permit Submittals

Except for projects on small sites, the principal differences between planning permit submittals and building permit submittals are:

- Submit *construction level detail*, rather than preliminary plans;
- Changes are *highlighted and explained*, if plans differ from the planning permit submittal;
- *Detailed maintenance plans* are included, along with documentation to support the maintenance agreement.

The list of materials that may be required at this stage in the project is shown in Table 3-3, and brief step-by-step instructions follow.

BUILDING PERMIT SUBMITTAL

Step 1: Update Project Documentation

Information regarding the design of stormwater measures that was submitted with the planning permit application must be updated, as necessary, for submittal with the building permit application. Specific requirements may vary in the various jurisdictions, but this is anticipated to include the following:

- Incorporate all *stormwater-related conditions of approval* that were applied as part of planning permit approval.
- Highlight and explain any *other stormwater-related changes* that have been made since the planning review. This may include, but is not limited to, changes in the boundaries of sensitive areas to be protected, changes in the amount of impervious surface to be created/replaced, changes in the stormwater pollutant source areas, changes in the location or design of stormwater measures, etc.
- Prepare *construction level detail* for all stormwater measures included in the project.
- Prepare detailed *hydraulic sizing calculations* for stormwater treatment and HM measures, using the hydraulic sizing guidance provided in Section 5.1.
- Prepare construction-level *planting plans* for landscape-based stormwater treatment measures.
NOTE: Some smaller projects may not require a planning permit. If this is true for your project, your building permit application submittal will need to include items listed in both Table 3-1 and Table 3-3. Ask the building department staff to help you identify the specific items needed for your submittal.

Table 3-3: Building Permit Submittal Checklist

<table>
<thead>
<tr>
<th>Required?</th>
<th>Yes</th>
<th>No</th>
<th>Information on Project Drawings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitive natural areas to be preserved and protected from development. – highlighting any changes since the planning permit submittal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Proposed impervious surfaces, e.g. roof, sidewalk, street, parking lot (for each drainage area)–highlight any changes since planning submittal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Site design measures to minimize impervious surfaces and promote infiltration – construction level detail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Construction level detail of stormwater treatment measures and (if 1 acre or more of impervious surface is created and/or replaced and not exempted) hydromodification management measures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pollutant source areas and corresponding structural source controls from local source control list – construction level detail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Landscaping plan for stormwater treatment measures–construction level detail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Letter- or legal-sized conceptual or site plan showing locations of stormwater treatment measures, for inclusion in the Maintenance Agreement.</td>
</tr>
</tbody>
</table>

Written Information on Municipal Forms or in Report Format

			Completed Impervious Surface Form, showing any changes since planning permit submittal.
			Detailed hydraulic sizing calculations for each treatment and/or hydromodification management measure.
			List of source control measures included in the project, showing any changes since planning permit submittal.
			Detailed maintenance plan for stormwater treatment measures, including inspection checklists, as appropriate.
			A standard treatment measure O&M report form, to be attached to the Maintenance Agreement

BUILDING PERMIT SUBMITTAL

Step 2: Prepare Maintenance Documentation

Property owners are responsible for assuring the long-term operation and maintenance of a project’s stormwater treatment measures, unless the applicable municipality approves other specific arrangements. Details may vary from one jurisdiction to another, but maintenance agreements generally require the property owner to assure that all stormwater treatment measures receive proper maintenance in accordance with an approved maintenance plan; that municipal, Water Board, and Mosquito Abatement District staff be granted access, as needed, to ensure proper maintenance and operation; and if the property owner fails to maintain the treatment measure, municipal staff be allowed, as its option, to enter the property, perform necessary emergency repairs, and charge the property owner for the costs.
necessary emergency repairs. Project applicants are typically required to provide the following documentation to support the maintenance agreement:

- A **conceptual plan or site plan** that is legible on letter- or legal-sized paper (8.5-by-11 inches or 8.5-by-14 inches) and shows the locations of the stormwater treatment measures that will be subject to the agreement. **Some municipalities have specific requirements** for these plans, such as requiring a conceptual plan that includes only the stormwater treatment measures. If more than one stormwater treatment measure is used, the treatment measures should be numbered for ease of identification (for example, Bioretention Area 1, Bioretention Area 2, etc.)

- A **maintenance plan** that includes specific long-term maintenance tasks and a schedule. Section 8.2 provides guidance for preparing a maintenance plan, and Appendix G features maintenance plan templates to use when preparing a maintenance plan. If a preliminary maintenance plan was submitted with the planning permit application, this plan should be updated to respond to municipal staff comments and include a sufficient level of detail for implementation.

- A Standard Treatment Measure Operation and Maintenance **Inspection Report Form**, which some municipalities require the property owner to complete and submit to the municipality each year. The purpose of the annual report is to help the municipality verify that appropriate O&M is occurring. A template for preparing this report form is included in Appendix G.

BUILDING PERMIT SUBMITTAL

Step 3: Submit Building Application

Assemble all the items listed in Table 3-3 that municipal staff has indicated are required for your project, and include them as attachments to your building permit application.

3.4 Simple Instructions for Small Sites

Some developers of smaller projects may be less familiar with requirements to incorporate stormwater treatment measures. If you are a qualified engineer, architect or landscape architect, you may be able to prepare the entire C.3 submittal yourself. If not, you will probably need to hire a qualified civil engineer, architect or landscape architect to prepare the submittal – or at least some of the more technical aspects of the submittal. Some tips for smaller projects are provided below:

- **Review submittal checklists with municipal staff.** If your project does not require a planning permit, you will need to include in your building permit application submittal some of the items that are listed in Table 3-1 (Planning Permit Submittal Checklist) and some from Table 3-3 (Building Permit Checklist). But remember, not every item in the checklists is required for every project. Make an appointment with a member of the building department staff to sit down and go through the checklists with you, to give you a reduced list of the items you will need for your small site. And make sure to get the list in writing, so you can refer to it, if necessary, in future conversations with municipal staff. If your project requires a planning permit, use this same strategy to get a list of required items from the planning staff.

- **Maximize the use of site design measures.** The less impervious surface area on the site, the smaller your stormwater treatment measures will need to be. Chapter 4
lists many strategies for reducing impervious surfaces, and it offers guidance for using self-treating areas (for example, landscaped areas, areas paved with turf block, or green roofs) to further reduce the size of treatment measures. Beginning December 1, 2012, projects that create and/or replace at least 2,500 but less than 10,000 square feet of impervious surface will be required to incorporate site design measures, using specifications that will be included in Appendix L.

- **Use LID treatment measures.** Even on small sites, LID treatment measures are required, except for projects that may receive LID treatment reduction credits as a Special Project (described in Appendix K). Chapter 6 includes technical guidance for some treatment measures, such as bioretention areas, and flow-through planters, which are well suited for small sites in densely developed areas. Bioretention areas that maximize infiltration to the underlying soils are encouraged even if it is infeasible to infiltrate the C.3.d amount of runoff, if there are no conditions that would make infiltration unsafe. If infiltration is precluded due to on-site conditions (such as proximity to buildings, high groundwater or contaminated soils), flow-through planters may be a good option.

- **Avoid vault systems.** Beginning December 1, 2011, mechanical vault-based treatment may be allowed only for some special projects (criteria to be included in Appendix J, when available). However, these systems in general are not as effective nor as easy to maintain as landscape-based biotreatment measures. Remember that, after December 1, 2011, biotreatment will be allowed for projects in which infiltration, evapotranspiration and rainwater harvesting and use are infeasible.

- **Consider using simplified sizing methods.** The technical guidance in Chapter 6 includes simplified sizing methods for several types of stormwater treatment measures, including flow-through planters, and bioretention areas. The technical guidance for each of these treatment measures highlights the easy-to-follow calculations for sizing the treatment measures. Please note, however, that there is a trade-off for simplicity. The simplified sizing calculations may result in treatment measures that are conservatively large. If space is at a premium, it may be cost-effective to hire a civil engineer with experience sizing stormwater treatment measures and use the more detailed sizing calculations, in order to potentially reduce the amount of land needed for stormwater treatment.

- **Use the planting guidance.** Appendix A provides guidance for selecting appropriate plantings for landscape-based stormwater treatment measures. Municipal staff will confirm that the plants included in your design meet the criteria set forth in this guidance.

Figure 3-5: Flow-through planters in a dense, urban setting (Source: City of Emeryville)
Low Impact Development
Site Design

In this Chapter:
- How site design measures can reduce stormwater treatment measure size
- Tree preservation and planting
- Self-treating and self-retaining areas
- Reducing the size of impervious areas
- On-site water storage

Site design measures for water quality protection are used to reduce the project’s impact on water quality and beneficial uses. Site design measures are not treatment measures. Including site design measures in a project does not meet the C.3 requirements for stormwater treatment, but it can help reduce the size of treatment measures (see Section 4.1). Site design measures can be grouped into two categories:

- Site design measures that preserve sensitive areas and high quality open space, and
- Site design measures that reduce impervious surfaces in a project.

This chapter focuses on site design measures that reduce impervious surfaces, which can reduce the amount of stormwater runoff that will require treatment. This translates into smaller treatment measures than would have been required without the site design measures. Site design measures are also important in minimizing the size of any required hydromodification management measures for the

Site design measures used to reduce the size of stormwater treatment measures must not be removed from the project without a corresponding resizing of the stormwater treatment measures.
site. Site design measures to reduce stormwater runoff can be incorporated in your project in the following ways:

- Preserve existing **trees** and vegetation.
- Use **self-treating** areas.
- Reduce the size of **impervious features** in the project.
- Use cisterns or rain barrels to store rainwater onsite.
- Use **alternative surfaces** that allow infiltration into the soil.

Where landscaped areas are designed to have a stormwater drainage function, it is important that they be installed and maintained without the use of fertilizers and pesticides. Consult **Bay Friendly Landscaping** (see Resources) and the Planting Guidelines in Appendix A. Landscaped areas with stormwater drainage functions also need to be carefully integrated with other landscaping features on the site early in project design. This may require coordinating separate designs prepared by different professionals.

Remember that any site design measures (including self-treating areas) used to reduce the size of stormwater treatment measures **must not be removed** from the project without a corresponding resizing of the stormwater treatment measures. For this reason, your municipality may require you to include site design measures in the maintenance agreement or maintenance plan for stormwater treatment measures, or otherwise record them with the deed. Depending on the municipality, site design measures may be subject to periodic operation and maintenance inspections. Check with the municipal staff regarding the local requirements.

4.1 Tree Preservation and Planting and Interceptor Tree Credits

Trees perform a variety of functions that reduce runoff volumes and improve water quality. Leaf canopies intercept and hold rainwater on the leaf surface, preventing it from reaching the ground and becoming runoff. Root systems create voids in the soil that facilitate infiltration. Trees also absorb and transpire large quantities of groundwater, making the soil less saturated, which allows more stormwater to infiltrate. Through the absorption process, trees remove pollutants from stormwater and stabilize them. Finally, tree canopies shade and cool paved areas.

A project may earn stormwater treatment credits by planting new trees and preserving existing trees at the project site. For each qualifying tree that is planted, the project earns stormwater treatment credits, which reduce the surface area (measured in square feet) of the project that must receive stormwater treatment. As shown in Table 4-1, different amounts of stormwater reduction credits are assigned to new evergreen and new deciduous trees, and existing trees receive credit for the square footage that is under the existing tree canopy. To be eligible for these credits, the trees need to meet the minimum requirements listed in Section 4.1.1. Guidance for planting and protection during construction is provided
in Section 4.1.2. Additional information about planting trees in dense, urban settings is provided in Section 4.1.3.

4.1.1 Minimum Requirements for Interceptor Trees

The following requirements are based on guidance in the Stormwater Quality Design Manual for the Sacramento and South Placer Regions.

<table>
<thead>
<tr>
<th>Table 4-1</th>
<th>Stormwater Treatment Credits for Interceptor Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Evergreen Trees</td>
</tr>
</tbody>
</table>
| Credits for new and existing trees that meet interceptor tree minimum requirements | 200 square feet | 100 square feet | Square footage under the tree canopy for:
| | | | ▪ Trees with an average DBH* of less than 12 in. |
| | | | ▪ Trees with an average DBH of 12 inches or more. |

Source: BASMAA Feasibility Report (which based its tree credit system on the tree credit system in the statewide Construction General Permit standards for post-construction stormwater control)

PLANTING NEW INTERCEPTOR TREES
To be eligible for stormwater interceptor tree credits, trees planted as part of the project must meet the following minimum requirements:

▪ Plant tree within 25 feet of ground-level impervious surface;
▪ Maintain appropriate distance from infrastructure and other structures that could be damaged by roots; avoid overhead power lines, underground utilities, septic systems, sidewalks, curbs, patios, etc.
▪ Space trees so crowns do not overlap at 15 yrs of growth;
▪ Specified trees must be 15 gallon container minimum size at planting;
▪ Dwarf species are not acceptable; native species and trees with a large canopy at maturity are preferred.
▪ Clearly label on project plans the trees designated for stormwater interceptor tree credits.

PRESERVATION OF EXISTING INTERCEPTOR TREES
To be eligible for stormwater interceptor tree credits, existing trees preserved at the project site must meet the following minimum requirements:
The tree trunk must be located within 25 feet of ground-level impervious surface that is included in the project’s calculation of the amount of stormwater runoff that will require treatment.

- Dwarf species are ineligible.
- Clearly label on project plans the trees designated for stormwater interceptor tree credits.

4.1.2 Interceptor Tree Planting and Construction Guidelines

The following guidelines are based on guidance in the Stormwater Quality Design Manual for the Sacramento and South Placer Regions.

Planting New Interceptor Trees

- Drainage and soil type must support selected tree species.
- Avoid compaction of soil in planting areas.
- Avoid contamination of planting areas by construction related materials such as lime or limestone gravel.
- Install turf grass no closer than 24 inches from trunk;
- Add 4-6 inches deep of hardwood mulch, 6 inches away from trunk;
- Permanent irrigation system may be required;
- Avoid excess irrigation due to mosquito issues;
- Pruning and removal and replacement of diseased/damaged tree may be required.
- If construction is ongoing, install high-visibility protective fencing at the outer limit of the critical root zone area.

Planting New Interceptor Trees

- Plan new landscaping under existing trees to avoid grade changes and excess moisture in the trunk area, depending on the tree species. Preserve existing plants that are compatible with irrigation requirements and are consistent with the landscape design.
- Avoid grade changes greater than 6 inches within the critical root zone.
- Avoid soil compaction under trees.
- During construction minimize disruption of the root system.
- Plans and specifications shall clearly state protection procedures for interceptor trees to be preserved.
- Protect existing trees during construction through the use of high-visibility construction fencing at the outer limit of the critical root zone area. The fence must prevent equipment traffic and storage under trees. Excavation in this area should be done by
hand and roots ½-inch and larger should be preserved. Pruning of branches or roots should be done by, or under supervision of, an arborist.

- Provide irrigation of trees during and after construction.
- Install turf grass no closer than 24 inches of trunk.

4.1.3 Tree Planting in Dense, Urban Areas

Soil volume, density, and compost, along with appropriate irrigation the first three years, are important to tree performance. Other aspects that influence how street trees perform include resistance to exposure (wind and heat) and resistance to disease and pest infestations.

When planting trees, particularly along streets where space is limited and roots may damage hard surfaces, consider the use of structural soils. Structural soil is a planting medium that consists of a stone skeleton structure for strength and clay soil for water retention, which allows urban trees to grow under pavement. The structural soil system creates a load-bearing matrix with voids filled with soil and air, essential for tree health. This allows for greater tree growth, better overall health of trees, and reduced pavement uplifting by tree roots. The voids that benefit the tree roots also provide increased stormwater storage capacity, allowing tree pits in paved areas to serve as a series of small detention basins. See www.hort.cornell.edu/uhi/outreach/csc/ for more information on structural soils.

Load-bearing modular grid products, such as the Silva Cell, have also been developed to allow the planting of trees in uncompacted native soils, fill soils, or stormwater treatment soils, extending under sidewalks and other areas of pavement. With the Silva Cell product, for example, each cell is composed of a frame (or frames) and a deck (see Figure 4-1). The frames can be stacked one, two, or three units high before they are topped with a deck to create a maximum amount of soil volume for tree root growth and stormwater infiltration. Cells can be installed laterally as wide as necessary. Void space within the cells may accommodate the surrounding utilities.

Figure 4-1: Silva Cells, stacked three units high. (Source: Deep Root Technologies, www.deeproot.com). The use of this photograph is for general information only, and is not an endorsement of this or any other proprietary product.
4.2 Self-Treating Areas

Some portions of your site may provide “self-treatment” if properly designed and drained. Such areas may include conserved natural spaces, landscaped areas (such as parks and lawns), and areas paved with turf block. Areas of pervious pavement – such as porous concrete, porous asphalt, or unit block pavers – may function as self-treating areas if they are designed to store and infiltrate the rainfall runoff volume described in Provision C.3.d of the MRP. These areas are considered “self-treating” because infiltration and natural processes that occur in these areas remove pollutants from stormwater.

As long as the self-treating areas are not used to receive runoff from other impervious areas on the site, and are installed and maintained without the use of pesticides or quick-release synthetic fertilizers, your drainage design may route the runoff from self-treating areas directly to the storm drain system or other receiving water. Consult Appendix A for guidance on using Bay-friendly landscaping and integrated pest management to avoid the use of pesticides and quick-release synthetic fertilizers. Stormwater runoff from the self-treating areas is kept separate from the runoff from paved and roofed areas of the site, which requires treatment.

Even vegetated areas will generate some runoff. If the runoff from the self-treating area commingles with the C.3.d amount of runoff from impervious surfaces, your stormwater treatment measure must be hydraulically sized to treat runoff from both the self-treating areas and the impervious areas. This does not apply to the high flows of stormwater that are in excess of the C.3.d amount of runoff, because stormwater treatment measures are not designed to treat these high flows. If your project requires hydromodification management, then the runoff from self-treating areas will need to be included in the sizing calculations for HM treatment measures.

Figure 4-2 compares the size of the stormwater treatment measure that would be required to treat the runoff from a site, depending on whether or not the runoff from a self-treating area discharges directly to the storm drain system or other receiving water. In the first (upper) sequence, runoff from the self-treating area is directed to the stormwater treatment measure. In the second (lower) sequence, runoff from the self-treating area bypasses the treatment measure and flows directly to the storm drain system or other receiving water, resulting in a smaller volume of stormwater that will require treatment. This results in a smaller stormwater treatment measure.
Figure 4-3 compares the conventional drainage approach to the self-treating area approach. The conventional approach combines stormwater runoff from landscaped areas with the runoff from impervious surfaces. Assuming the parking lot storm drain leads to a treatment measure, in the conventional approach, the treatment measure will need to be sized to treat runoff from the entire site. The self-treating area approach routes runoff from appropriately designed and maintained landscaped areas directly to the storm drain system. In this approach, the treatment measure is sized to treat only the runoff from impervious areas.

Figure 4-4 (below) shows an example site in which the runoff from impervious areas must flow to the stormwater treatment measure before discharging to the storm drain, while runoff from the self-treating area may discharge directly to the storm drain. This is allowable
because the self-treating area does not accept runoff from the impervious areas on the site.

4.3 Self-Retaining Areas

In “self-retaining areas” or “zero discharge areas,” a portion of the amount of stormwater runoff that is required to be treated is infiltrated or retained in depressed landscaped areas. If it is possible to create a self-retaining area on your site, you can design smaller stormwater treatment measures (as illustrated in Figures 4-5 and 4-6). Drainage from roofs and paving is directed to the self-retaining area, where it can pond and infiltrate into the soil. Self-retaining areas may be created by designing concave landscaped areas at a lower elevation than surrounding paved areas, such as walkways, driveways, sidewalks and plazas. The following design considerations apply to self-retaining areas:

- Self-retaining areas are designed as concave landscaped areas that are bermed or ditched to retain the first one-inch of rainfall without producing any runoff. Modeling conducted for the Harvest and Use, Infiltration and Evapotranspiration Feasibility/Infeasibility Criteria Report (Feasibility Report) demonstrated that a ponding depth of 3 inches is sufficient to meet the C.3 stormwater treatment objective.

- Runoff may enter the self-retaining area as sheet flow, or it may be piped from a roof or paved area. The elevation difference between the self-retaining area and adjacent areas should be sufficient to allow build-up of turf or mulch within the self-retaining area.
A 2:1 ratio of impervious area to the receiving pervious area is acceptable. Modeling conducted for the Feasibility Report confirmed that a 2:1 ratio is sufficient to achieve the C.3.d stormwater treatment objective, even for soils with very low hydraulic conductivity.

Drainage from self-retaining areas (for amounts of runoff greater than the first one-inch) must flow to off-site streets or storm drains without flowing onto paved areas within the site.

If overflow drains or inlets to the storm drain system are installed within the self-retaining area, set them at an elevation of at least 3 inches above the low point to allow ponding. The overflow drain or storm drain inlet elevation should be high enough to allow ponding throughout the entire surface of the self-retaining area.

Any pavement within the self-retaining area cannot exceed 5 percent of the total self-retaining area.

Slopes may not exceed 4 percent.

The municipality may require amended soils, vegetation and irrigation to maintain soil stability and permeability.

Self-retaining areas shall be protected from construction traffic and compaction.
If you are considering using a self-retaining area in a project that must meet hydromodification management (HM) requirements, use the Bay Area Hydrology Model to identify the appropriate sizing of the self-retaining area to meet the HM objective of matching post-project stormwater flows and durations to pre-project patterns for smaller, frequent storms (ranging from 2- to 10-year storm events). See Chapter 7.

4.4 Reducing the Size of Impervious Areas

A variety of project features can be designed so that they result in a smaller “footprint” of impervious surface. These techniques generally need to be incorporated very early in the project design. A number of techniques for reducing impervious surfaces are described below.

Alternative Site Layout Techniques
Check with your local jurisdiction about its policies regarding the following site design measures:

- Reduce building footprints by using compact, multi-story structures, as allowed by local zoning regulations.

- Cluster buildings to reduce the length of streets and driveways, minimize land disturbance, and protect natural areas.

- Design narrow streets and driveways, as allowed by the local jurisdiction.

- Using sidewalks on only one side of the street may be appropriate in areas with little pedestrian and vehicular traffic, as allowed by the local jurisdiction.

Site designs that reduce the size of impervious area generally need to be incorporated very early in the project design.

Figure 4-6: Schematic Drainage Plan for Site with a Self-Retaining Area
Minimize Surface Parking Areas
A variety of techniques can be used to minimize surface parking areas, in terms of the number and size of parking spaces, as allowed by the local jurisdiction. These solutions focus on either reducing the demand for parking, maximizing efficient use of parking space, or implementing design solutions to reduce the amount of impervious surface per parking space.

- **Reduce parking demand** by *separating the cost of parking* from the cost of housing or leasable space. This allows the buyer or tenant to choose how much parking they actually need and are willing to pay for.

- **Maximize efficient use of parking space** with **shared parking** that serves different land uses that have different times of peak demand. For example, an office use with demand peaks during the day can share parking with restaurants, where demand is greatest during the evening, and to some extent residential uses, where demand peaks are in the evenings, nights and on weekends.

- **Parking structures** can be an efficient way to reduce the amount of impervious surface needed for parking. Structured parking can be integrated with usable space in buildings that also house office or residential space, or include ground-floor retail lining the street. Shared parking strategies can work very well with structured parking.

- **Parking lifts** are another way to reduce the amount of impervious surface needed for parking. A parking lift stacks two to three cars using a mechanical lift for each surface space. They can be operated manually by residents or employees, or by a valet or parking attendant. With proper training for residents, employers, or parking attendants, this strategy can be a practical way to double or triple the parking capacity given a set amount of land.

- Another way to maximize the efficient use of parking area is **valet parking**, where attendants park cars much closer than individual drivers would in the same amount of parking space.

4.5 On-Site Water Storage
Technical guidance for rainwater harvesting and use is provided in Section 6.10 of Chapter 6. A rainwater harvesting system is considered a stormwater treatment measure if it is designed to capture and use the full amount of rainwater runoff that is required to be treated.
per Provision C.3.d of the MRP. A rainwater harvesting system is considered a site design measure if it is designed to capture and use less than the C.3.d amount of runoff. If your project will include a rainwater harvesting system as a site design measure, follow the guidance in Section 6.10, with the exception of meeting the C.3.d stormwater treatment sizing criteria.

Figure 4-8: Installation of notched unit pavers in Portland, Oregon. Water infiltrates through notches between pavers. (Photo courtesy of City of Portland)
General Technical Guidance for Treatment Measures

This Chapter contains guidance on:

- Hydraulic sizing criteria,
- Applicability of non-landscape based treatment measures,
- “Treatment trains,”
- Infiltration guidelines,
- Low-flow systems,
- Plant selection and maintenance,
- Mosquito control requirements,
- Incorporating treatment with hydromodification management measures,
- Treatment measures in areas of Bay fill,
- Treatment measures in seismic hazard areas, and
- Getting water into stormwater treatment measures.

This general technical information in this section applies to the full range of stormwater treatment measures for all types of new development and redevelopment projects. See Chapter 6 for technical guidance on specific types of stormwater treatment measures.

5.1 Hydraulic Sizing Criteria

Stormwater treatment measures must be sized to treat runoff from relatively small sized storms that comprise the vast majority of storms. The intent is to treat most of the stormwater runoff, recognizing that it would be infeasible to size stormwater treatment measures to treat runoff from large storms that occur every few years. (See Section 5.6 for more information on how stormwater treatment measures that are sized to treat runoff from small, frequent storms can be designed to also handle flows from large, infrequent storms.)

How Much of Project Site Needs Stormwater Treatment?

The Municipal Regional Stormwater Permit requires that, for all “Regulated Projects” the
project site must receive stormwater treatment. Municipalities may require stormwater treatment for projects that are smaller than the Regulated Project threshold, and in these cases, stormwater treatment is required to the maximum extent practicable (MEP). Exceptions to the stormwater treatment requirement for Regulated Projects are pervious areas that are “self-treating” (including areas of pervious pavement with a hydraulically-sized aggregate base layer) as described in Section 4.2, and “self-retaining areas” designed to store and infiltrate runoff from rooftops or paved areas as described in Section 4.3. Other than “self-treating areas” and “self-retaining areas,” **ALL AREAS AT A PROJECT SITE** must receive stormwater treatment.

Flow-Based Versus Volume-Based Treatment Measures

For hydraulic sizing purposes, stormwater treatment measures can be divided generally into three groups: flow-based, volume-based, and treatment measures that use a combination of flow and volume capacity. The **flow-based treatment measures** remove pollutants from a moving stream of stormwater, and the treatment measures are sized based on hourly or peak flow rates. Examples of flow-based treatment measures include bioretention areas and vegetated buffer strips. **Volume-based treatment measures** detain stormwater for periods of between 24 hours and 5 days, so the sizing is based on detaining a large volume of water for treatment and/or infiltration to the ground. Examples of volume-based stormwater treatment measures include extended detention basins and infiltration trenches. Flow-through planters and bioretention areas can use a combination of flow and volume capacity for stormwater treatment. Table 5-1 shows which hydraulic sizing method is appropriate for commonly used stormwater treatment measures.

<table>
<thead>
<tr>
<th>Type of Treatment Measure</th>
<th>Type of Hydraulic Sizing Criteria to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree well filter</td>
<td>Flow-based</td>
</tr>
<tr>
<td>Vegetated buffer strip</td>
<td>Flow-based</td>
</tr>
<tr>
<td>Green roof</td>
<td>Flow-based</td>
</tr>
<tr>
<td>Media filter</td>
<td>Flow-based</td>
</tr>
<tr>
<td>Bioretention area</td>
<td>Flow-based or Combination flow and volume</td>
</tr>
<tr>
<td>Flow-through planter box</td>
<td>Flow-based or Combination flow and volume</td>
</tr>
<tr>
<td>Infiltration trench</td>
<td>Volume-based</td>
</tr>
<tr>
<td>Extended detention basin</td>
<td>Volume-based</td>
</tr>
<tr>
<td>Pervious paving</td>
<td>Volume-based</td>
</tr>
</tbody>
</table>

Volume-Based Sizing Criteria

The Municipal Regional Stormwater Permit specifies two alternative methods for hydraulically sizing volume-based stormwater treatment measures. One of the permit-approved methods, the “Urban Runoff Quality Management Approach,” is based on simplified procedures that are not recommended for use when information is available from continuous hydrologic simulation of runoff using local rainfall records (see “Urban Runoff Quality Management, WEF Manual of Practice No. 23/ASCE Manual and Report on Engineering Practice No. 87.”) Because the results of continuous simulation modeling
based on local rainfall are available, the Countywide Program recommends using the “California BMP Handbook Approach,” or “80 percent capture method,” shown in the text box.

Please note that local municipalities may also allow project applicants to use an even simpler sizing method for sizing flow/volume-based treatment measures such as flow-through planters and bioretention areas, which is described below, under the heading, Simplified Sizing Methods.

The **80 percent capture method** should be used when sizing extended detention basins. The 80 percent runoff value is determined by the Storage, Treatment, Overflow, Runoff Model (STORM), which uses continuous simulation to convert rainfall to runoff based on local rainfall data. STORM was developed by the U.S. Army Corps of Engineers. (See http://www.hec.usace.army.mil/publications/ComputerProgramDocumentation/CPD-7.pdf).

The method for sizing volume-based stormwater treatment measures is described in the California Stormwater Quality Association’s 2003 Stormwater BMP Handbook New Development and Redevelopment available at www.cabmphandbooks.com. The method used to size volume-based treatment measures in this guidance involves the following steps.

1. **Determine which rainfall region the project site is located in using the figure in Appendix C.** San Mateo County has been divided into seven different regions based on local rainfall patterns.

2. **Determine the drainage area** that will contribute flow to the volume-based treatment measure. This includes all areas that will contribute runoff to the stormwater treatment measure, including pervious areas, impervious areas, and off-site areas, regardless of whether they are directly or indirectly connected to the stormwater treatment measure. Self-treating areas and self-retaining areas (see Sections 4.2 and 4.3) that do not direct flows requiring stormwater treatment to the treatment measure are excluded from the treatment measure drainage area.

Volume-Based Sizing Criteria

Design volume-based treatment measures to treat stormwater runoff equal to the volume of annual runoff required to achieve **80 percent or more capture**, determined in accordance with methodology set forth in Appendix D of the California Stormwater BMP Handbook, using local rainfall data.

A **runoff coefficient** is the ratio of the runoff rate to rainfall and it is dimensionless. For example, a runoff coefficient of 0.70 means that 70 percent of the rainfall that falls on this type of surface will flow off as runoff.
3. Determine the **composite runoff coefficient** for the area at the project location that is tributary to the volume-based treatment system. The runoff coefficients for stormwater treatment are lower than for flood control. Runoff coefficient “C” factors from BASMAA include the estimated values shown in Table 5-2 for use in sizing stormwater treatment measures. These “C” factors are only appropriate for stormwater treatment designs that are based on small, frequent storms. Flood control sizing must be based on coefficients approved by the local jurisdiction. Contact the local municipality for local requirements. The composite runoff coefficient is calculated as a weighted average. Multiply the area of each type of surface tributary to a stormwater treatment measure by the respective runoff coefficient. Add the results and divide by the total area that drains to a stormwater treatment measure.

4. Use the composite runoff coefficient to interpolate a unit basin storage volume value for composite runoff coefficients that are different from the four (0.25, 0.50, 0.75, and 1.00) listed in Table 5-3. For example using the Region 6 values, if the composite runoff coefficient was calculated to be 0.55, the unit basin storage volume would be 0.46

The runoff coefficients in Table 5-2 are for use only in stormwater treatment designs based on small, frequent storms. Flood control sizing must be based on coefficients approved by the local jurisdiction. Contact the municipality for local requirements.

Table 5-2

Estimated Runoff Coefficients for Various Surfaces During Small Storms

<table>
<thead>
<tr>
<th>Type of Surface</th>
<th>Runoff Coefficients “C” factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete, grouted pavers</td>
<td>0.80</td>
</tr>
<tr>
<td>Roofs</td>
<td>0.90</td>
</tr>
<tr>
<td>Asphalt</td>
<td>0.70</td>
</tr>
<tr>
<td>Pervious concrete</td>
<td>0.30</td>
</tr>
<tr>
<td>Cobblest</td>
<td>0.30</td>
</tr>
<tr>
<td>Pervious asphalt</td>
<td>0.28</td>
</tr>
<tr>
<td>Natural stone (without grout)</td>
<td>0.13</td>
</tr>
<tr>
<td>Brick (without grout)</td>
<td>0.10</td>
</tr>
<tr>
<td>Turf block</td>
<td>0.10</td>
</tr>
<tr>
<td>Unit pavers on sand</td>
<td>0.10</td>
</tr>
<tr>
<td>Crushed aggregate</td>
<td>0.10</td>
</tr>
<tr>
<td>Grass</td>
<td>0.10</td>
</tr>
<tr>
<td>Grass over porous plastic</td>
<td>0.05</td>
</tr>
<tr>
<td>Gravel over porous plastic</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note: These C-factors are only appropriate for small storm treatment design and should not be used for flood control sizing. When available, locally developed small storm C-factors for various surfaces may be used.
inches. The 0.55 composite runoff coefficient is one-fifth of the way between the table’s 0.5 and 0.75 composite runoff coefficient.

5. Calculate the **required capture volume** by multiplying the drainage area from step 2 by the unit basin storage volume value. Due to the mixed units that result, such as acre-inches, it is recommended that the resulting volume be converted to cubic feet for use during design.

<table>
<thead>
<tr>
<th>Region</th>
<th>Meteorological Station, and Mean Annual Precipitation (Inches)</th>
<th>Unit basin storage volumes (inches) based on composite runoff coefficient for area tributary to the volume-based treatment measure (varies with percentage of impervious surface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boulder Creek, 55.9”</td>
<td>0.51 inches 1.02 1.53 2.04</td>
</tr>
<tr>
<td>2</td>
<td>La Honda, 24.4”</td>
<td>0.21 0.42 0.64 0.86</td>
</tr>
<tr>
<td>3</td>
<td>Half Moon Bay, 25.92”</td>
<td>0.20 0.41 0.60 0.82</td>
</tr>
<tr>
<td>4</td>
<td>Palo Alto, 14.6”</td>
<td>0.16 0.32 0.49 0.64</td>
</tr>
<tr>
<td>5</td>
<td>San Francisco, 21.0”</td>
<td>0.18 0.36 0.54 0.73</td>
</tr>
<tr>
<td>6</td>
<td>San Francisco airport, 20.1”</td>
<td>0.21 0.42 0.63 0.85</td>
</tr>
<tr>
<td>7</td>
<td>San Francisco Oceanside, 19.3”</td>
<td>0.18 0.35 0.53 0.72</td>
</tr>
</tbody>
</table>

Source: CDM memo dated May 14, 2004

*1 See Appendix C to locate the applicable Treatment Measure Design Criteria Region.

The other critical issue for the design of volume-based stormwater treatment measures that temporarily pond water is the **drawdown time**. The outlet structure’s orifices should be designed to draw down the stormwater flow being treated within 48 hours. Forty-eight hours of drawdown time is the minimum acceptable drawdown time for stormwater treatment. A longer drawdown time is acceptable, up to a maximum of 5 days. Drawdown time may not exceed five days, to avoid creating conditions for mosquito breeding.

Flow-Based Sizing Criteria

The Municipal Regional Stormwater Permit specifies three alternative methods for hydraulically sizing flow-based stormwater treatment control measures, such as vegetated swales, flow through planter boxes, and media filters. The percentile rainfall intensity method is based on ranking the hourly depth of rainfall from

Figure 5-2: Bioretention area, Daly City (example of a flow-based treatment measure)
storms over a long period, and determining the 85th percentile hourly rainfall depth and multiplying this value by two. In the Bay Area this value is generally around 0.2 inches/hour. The permit also allows the use of 0.2 inches/hour as one of the three alternative methods regardless of the results from calculating values from local rainfall depths.

Because two of the permit allowed methods yield similar results and the third method is difficult to apply, and not as well supported by technical studies, the Countywide Program recommends the use of a rainfall intensity figure of 0.2 inches/hour to design flow-based treatment systems.

The amount of flow that the stormwater treatment measure must be sized to treat is calculated using the rational method:

\[Q = C i A \]

Where

- \(Q \) = flow in ft\(^3\)/second
- \(i \) = rainfall intensity in inches/hour
- \(C \) = composite runoff coefficient (unitless – see Table 5.2)
- \(A \) = drainage area in acres

To calculate the required treatment flow, simply multiply the drainage area that contributes flow to the treatment measure by the composite runoff coefficient by 0.2 inches/hour of rainfall intensity. The drainage area and composite runoff coefficient are determined by following steps 1 through 3 described above under the Volume-Based Sizing Criteria. Appendix B includes an example (example 1) of sizing vegetated swales and bioretention areas using this sizing method.

As with volume-based treatment measures, municipalities within San Mateo County may allow project applicants to use simplified sizing methods for some flow-based treatment measures. This is described below, under the heading, “Simplified Sizing Methods.”

Combination Flow and Volume Design Basis

Some stormwater treatment measures, such as bioretention areas and flow-through planters, include some design elements that provide flow-based treatment and some that provide volume-based treatment. For example, flow-based treatment occurs in a biotreatment area with an underdrain as stormwater filters through the soil and flows out the underdrain. Volume-based treatment is provided when stormwater is stored in the surface ponding area and the pore spaces of the soil media. The surface ponding area may be sized so that the ponding area functions to retain water prior to it entering the soil at the minimum 5 inches per hour required by MRP Provision C.3.c(2)(b)(vi).

The “simplified approach” for sizing bioretention areas and flow-through planters, in which the surface area of the treatment measure is designed to be 4 percent of the impervious area that drains to the treatment measure, is a flow-based sizing approach. This approach tends to result in the design of a conservatively large treatment measure because it does not account for any storage provided by the surface ponding area. A volume-based sizing
approach for bioretention areas, in which the surface ponding area and depth are sized to contain the entire water quality design volume, is also conservative because it does not take into account the emptying of this ponding area into the soil media during the storm event.

Provision C.3.d of the MRP specifies that treatment measures that use a combination of flow and volume capacity shall be sized to treat at least 80 percent of the total runoff over the life of the project, using local rainfall data. This sizing criteria is best applied when using a continuous simulation hydrologic model to demonstrate that a treatment system is in compliance with C.3.d. However, when doing sizing calculations by hand, compliance with C.3.d. can be demonstrated by showing how the treatment system design meets both the flow-based and volume-based criteria.

For bioretention areas and flow-through planters, the following approach may be used to take into consideration both the flow of stormwater through the planting media and the volume of stormwater in the surface ponding area. Note that the approach assumes that all of the design rainfall becomes runoff, and thus it is appropriate for use where the drainage area to the bioretention area is mostly impervious.

1. Determine the required treatment volume using the **80 percent capture method** described in Section 5.1. As part of this method, you will calculate the **unit basin storage volume** in inches using Table 5-3 (adjusted for the mean annual precipitation of the project site) and the **required capture volume** in cubic feet (the unit basin storage volume multiplied by the drainage area to the treatment measure, converted to units of cubic feet). For example, say you determined the adjusted unit basin storage volume to be 0.5 inches, and the drainage area to the bioretention facility is 7,000 square feet. Then the required capture volume would be $0.5\text{ inches} \times \frac{1\text{ foot}}{12\text{ inches}} \times 7,000\text{ square feet} = 292\text{ cubic feet}$.

2. Assume that a **rainfall intensity of 0.2 inches/hour** will be used as the flow based sizing criteria (as recommended by the Countywide Program).

3. Assume that the rain event that generates the required capture volume of runoff determined in Step 1 occurs at a constant intensity of 0.2 inches/hour from the start of the storm (i.e., assume a rectangular hydrograph). Calculate the **duration of the rain event** by dividing the unit basin storage volume by the intensity. In other words, determine the amount of time required for the unit basin storage volume to be achieved at a rate of 0.2 inches/hour. For example, if the unit basin storage volume is 0.5 inches, the rain event duration is $0.5\text{ inches} \div 0.2\text{ inches/hour} = 2.5\text{ hours}$.

4. Make a **preliminary estimate of the surface area** of the bioretention facility by multiplying the area of impervious surface to be treated by a sizing factor of 0.04. For example, a drainage area of 7,000 square feet $\times 0.04 = 280$ square feet of bioretention treatment area.

5. Assume a bioretention area that is about 25% smaller than the bioretention area calculated in Step 4. Using the example above, $280 - (0.25 \times 280) = 210$ square
feet. Calculate the volume of runoff that filters through the treatment soil at a rate of 5 inches per hour (the design surface loading rate for bioretention facilities), for the duration of the rain event calculated in Step 3. For example, for a bioretention treatment area of 210 square feet, with an infiltration rate of 5 inches per hour for a duration of 2.5 hours, the volume of treated runoff = 210 square feet \times 5 \text{ inches/hour} \times (1 \text{ foot/12 inches}) \times 2.5 \text{ hours} = 219 \text{ cubic feet}.

6. Calculate the portion of the required capture volume remaining after treatment is accomplished by filtering through the treatment soil. The result is the amount that must be stored in the ponding area above the reduced bioretention area assumed in Step 5. For example, the amount remaining to be stored comparing Step 1 and Step 5 is 292 cubic feet − 219 cubic feet = 73 cubic feet. If this volume is stored over a surface area of 210 square feet, the average ponding depth would be 73 \text{ cubic feet} ÷ 210 \text{ square feet} = 0.35 \text{ feet} or 4.2 inches.

7. Check to see if the average ponding depth is between 6 and 12 inches, which is the recommended allowance for ponding in a bioretention facility or flow-through planter. If the ponding depth is less than 6 inches, the bioretention design can be optimized with a smaller surface area (i.e., repeat Steps 5 and 6 with a smaller area). If the ponding depth is greater than 12 inches, a larger surface area will be required. (In the above example, the optimal size of the bioretention area is 190 square feet with a ponding depth of 6 inches.)

Appendix B includes examples of sizing bioretention areas using this combination flow- and volume-based method.

Simplified Sizing Methods
Some simplified sizing methods are offered to help evaluate, during the planning phase, whether sufficient land has been allocated for stormwater treatment. If these methods are used in place of design calculations for site-specific conditions, they may result in conservatively large stormwater treatment measures.

- A bioretention area or flow-through planter requires 4 percent of the impervious area (1,750 square feet of bioretention area per impervious acre). This is a flow-based ratio, based on runoff inflow resulting from 0.2 inches of rainfall per hour, with an infiltration rate of 5 inches per hour. This 4 percent “rule of thumb” does not take into consideration the volume of water that is temporarily detained in the surface ponding area.

- An extended detention basin has a minimum drainage area of 5 acres. Allow a 1-inch diameter outlet orifice for a 5-acre drainage area. Allow a 1-acre basin, 3.5-feet deep, for a 100-acre drainage area.
5.2 Applicability of Non-Low Impact Development (LID) Treatment Measures

Beginning December 1, 2011, the MRP places restrictions on the use of non-LID treatment treatment measures. Only Special Projects will be allowed some limited use of non-LID treatment measures for stand-alone treatment of stormwater. Specifically, Special Projects, as defined in Appendix J, are allowed to treat specified percentages of the C.3.d amount of stormwater runoff with vault-based media filters that have a high flow rate and with tree well filters that have a high flow rate. See Appendix J for additional guidance on Special Projects.

Underground vault-based, non-LID treatment measures typically require frequent maintenance to function properly, and experience has shown that because these systems tend to be “out of sight, out of mind,” they often do not receive adequate maintenance. Where underground vaults are allowed, they must be sealed to prevent mosquito access and include suitable access doors and hatches to allow for frequent inspections and maintenance. But even when maintained properly, many underground vault systems lack the detention time required to remove pollutants associated with fine particles. See Appendix D for more information regarding non-LID treatment measures.

5.3 Using Manufactured Treatment Measures

In the limited cases where a municipality does approve the use of one or more manufactured treatment measures in a development project, the project applicant is responsible for installing the unit(s) so that they will function as designed and for following the manufacturer’s instructions for maintenance. When installed and maintained properly, manufactured media filters (see Section 6.11) may have adequate pollutant removal levels for fine particles and their attached pollutants. Media filters typically include two chambers: the first chamber allows coarse solids to settle, and the second contains the filters that consist of a proprietary media. When installed and maintained properly, hydrodynamic separators may be effective in removing trash and coarse sediment, but not dissolved pollutants, and they may be installed upstream of other treatment measures.

The applicant is responsible for ensuring that the manufactured treatment measures used in the project are sized in accordance with the NPDES stormwater permit hydraulic sizing criteria to treat the amount of runoff that will flow to these treatment measures.

Planning permit submittals should include a description of the product(s) proposed for use, along with preliminary sizing calculations, and conceptual plans showing the proposed locations of treatment measures on the site. Building permit submittals should include detailed sizing calculations, construction-level drawings, and a copy of the manufacturer’s instructions for construction and maintenance. Maintenance plans for manufactured treatment measures must follow the manufacturer’s maintenance instructions.
Listed below are some issues project engineers have encountered when selecting and incorporating manufactured stormwater treatment measures into development projects:\(^2\)

- **Consider hydraulic depth.** Different types of manufactured treatment measures have different head losses. Your options may be limited if the site has limited hydraulic depth or other constraints.

- **Allow for necessary field changes.** In the planning permit application submittal, request approval to use more than one manufactured treatment measure product in the project. Format the design, details, and specifications to identify the approved, alternative manufactured treatment measures, and include these documents in the building permit application submittal. Giving the contractor options to work with will help avoid delays to your project.

- **Allow design flexibility.** Some manufactured treatment measures have the same invert elevation in and out, while some require a change in elevation between the invert and outlet. If possible, provide for a design that allows for a change in invert elevations.

- **Include sufficient information.** Contract documents should include enough design information so that the contractor can evaluate and demonstrate that the treatment measure meets the design objectives.

- **Avoid approval problems.** If applicable, clarify in the design and construction documents that the contractor will be responsible for obtaining approval from the local jurisdiction for any changes that violate the approved permit plans or conditions.

5.4 Using Treatment Trains

Stormwater can be directed to flow through a series of different types of stormwater treatment measures that are each designed to treat different broad categories of stormwater pollutants. These groupings of stormwater treatment measures have been called “stormwater treatment trains” or “multiple treatment systems.” The definition of treatment train given in Fact Sheet TC-60 of the CASQA Handbook is shown in the text box. The use of a **series of treatment measures** is most effective where each treatment measure optimizes the removal of a particular type of pollutant, such as coarse solids and debris, pollutants associated with fine solids, and dissolved pollutants. Stormwater treatment measures operate by

using physical processes, such as sedimentation and filtration, to remove solids suspended in stormwater runoff. The removal of dissolved pollutants requires chemical adsorption or biological uptake. Each of the stormwater treatment measures in a treatment train should be sized using the Provision C.3 numeric sizing criteria.

The simplest version of the treatment train concept consists of pretreatment prior to the stormwater reaching the main treatment system. For example, bioretention areas may use vegetated buffer strips to pretreat stormwater to settle out sediment prior to the stormwater being treated by a bioretention area. This type of pretreatment helps to prevent sediment from clogging the bioretention area, which maximizes its life. Another example of a coupled pretreatment and treatment system is used in extended detention basins that have a small, sediment forebay where most of the larger sediment settles and can be easily removed.

5.5 Infiltration Guidelines

Infiltration is prioritized by the MRP, and it can be a very cost-effective method to manage stormwater – if the conditions on your site allow. A wide-range of site-design measures and stormwater treatment measures can be used to increase stormwater infiltration and can be categorized as follows:

- **Site design measures** -- such as clustering development or otherwise laying out the site to reduce impervious area, routing drainage from building roofs to landscaped areas, and using pervious pavement.

- **Indirect infiltration** methods, which allow stormwater runoff to percolate into surface soils. Runoff may reach groundwater indirectly, or it may be underdrained into subsurface pipes. Examples of indirect infiltration methods include bioretention areas and shallow infiltration trenches or basins. Unless geotechnical considerations preclude it, all projects should maximize infiltration of stormwater runoff through methods such as bioretention (see Section 6.1).

- **Direct infiltration** methods, which are designed to bypass surface soils and transmit runoff directly to subsurface soils for groundwater recharge. These types of devices must be located and designed to limit the potential for stormwater pollutants to reach groundwater. Examples of direct infiltration methods include infiltration trenches and dry wells.

The local jurisdiction may require a geotechnical review for your project. When selecting site design and stormwater treatment measures that promote on-site infiltration, be sure to follow the geotechnical engineer’s recommendations based on soil boring data, drainage pattern, and the current requirements for stormwater treatment. The geotechnical engineer’s input will be essential to prevent damage from underground water to surrounding properties, public improvements, slope banks, and even mudslides from accumulated below-ground water.
Appendix I provides instructions for determining the feasibility and infeasibility of treating the entire C.3.d amount of runoff from a project with infiltration. Appendix E provides guidelines to help you determine whether your project site is suitable for using site design and/or stormwater treatment measures that increase stormwater infiltration. Appendix E also describes regulatory requirements that apply to direct infiltration methods, as well as practical tips for design and construction.

5.6 Technical Guidance for Low-Flow Systems

Although stormwater treatment measures are sized to remove pollutants from flows resulting from frequent, small storms, projects must be designed to handle flows for stormwater treatment and drainage from large infrequent flows to prevent flooding. The integration of flood control and stormwater treatment may be accomplished in one of two ways, which are described below.

One option is to have the flows that are larger than those required by the hydraulic sizing criteria (given in Section 5.1) handled within the stormwater treatment measure. This includes making sure that landscape-based treatment measures do not re-suspend and flush out pollutants that have been accumulating during small storms, and that landscape-based stormwater treatment measures do not erode during flows that will be experienced during larger storms. Most vegetated buffer strips and extended detention basins are designed to handle flood flows, although they would not be providing much treatment during these flows. The technical guidance in Chapter 6 for treatment measures that operate in this manner includes design standards to accommodate flood flows associated with larger storms.

Figure 5-3: Stepped manhole design directs low-flows to treatment measure and diverts high flows to storm drain system. (BKF Engineers)
Bioretention areas, flow-through planter boxes, and other treatment systems that rely on filtering or infiltrating stormwater through soils must have overflow systems that allow flood flows larger than the increment of flow that can be treated to bypass the stormwater treatment measure. These systems have to include an alternative flow path for high flows, otherwise stormwater would back up and flood the project area. The technical guidance in Chapter 6 for treatment measures that operate in this manner includes design standards for high-flow bypasses.

For some types of stormwater treatment measures that are designed as low-flow systems, it is often necessary to restrict stormwater flows and **bypass the flows around the facility**. In these instances the stormwater treatment measures are designed to treat only the water from small storm events, and may include infiltration trenches, media filters, or extended detention basins. Bypassing larger flows helps prevent hydraulic overload and resuspension of sediment, and it can protect stormwater treatment measures from erosion.

Flow splitter devices may be used to direct the initial flows of runoff, or "first flush," into a stormwater treatment measure, and bypass excess flows from larger storm events around the facility into a bypass pipe or channel. The bypass may connect directly to the storm drain system, or to another stormwater treatment measure that designed to handle high flows. This can be accomplished using a stepped manhole (Figure 5-3) or a proprietary flow splitter. As illustrated in Figure 5-4, runoff enters the device by way of the inlet at the left side of the figure; low flows are conveyed to the stormwater treatment measure by way of the outlet pipe at the lower right. Once the treatment measure reaches its design capacity, water backs up in the low-flow outlet pipe and into the flow splitter. When the water level in the flow splitter reaches the bypass elevation, stormwater begins to flow out the overflow pipe, shown at the upper right of the figure, bypassing the stormwater treatment measure. The bypass generally functions by means of a weir inside the flow splitter device.

5.7 Plant Selection and Maintenance

Selecting the appropriate plants and using sustainable, horticulturally sound landscape installation and maintenance practices are essential components of a successful landscape-based stormwater treatment measure.

Plant Selection Guidance

Plant selection must consider the type of development and location, uses on the site and an appropriate design aesthetic. Ideally, a Landscape Architect will be involved as an active member of the design team **early in the site design phase** to review proposed stormwater measures and coordinate development of an integrated solution that responds to all of the various...
site goals and constraints. In some cases, one professional will design a stormwater control, while another designs the rest of the landscaping. In these situations it is essential for the professionals to work together very early in the process to integrate their designs.

Appendix A provides user-friendly guidance in selecting planting appropriate to the landscape-based stormwater treatment measures included in Chapter 6 and the site design measures in Chapter 4.

Bay Friendly Landscaping
Bay-friendly landscaping is a whole systems approach to the design, construction and maintenance of the landscape in order to support the integrity of the local watershed. Project sponsors are encouraged to use landscape professionals who are familiar with and committed to implementing Bay (and ocean) -Friendly landscaping practices from the initial plant selection through the long-term maintenance of the site. Appendix A summarizes Bay Friendly Landscaping Practices that may be implemented to benefit water quality of the bay, ocean and their tributaries, based on the Bay-Friendly Landscaping Guidelines prepared by Stopwaste.Org (available at www.bayfriendly.org).

Integrated Pest Management
Integrated pest management (IPM) is a holistic approach to mitigating insects, plant diseases, weeds, and other pests. Projects that require a landscaping plan as part of a development project application are encouraged to use IPM, as indicated in each agency's source control measures list. Avoiding pesticides and quick release synthetic fertilizers is particularly important when maintaining stormwater treatment measures to protect water quality.

IPM encourages the use of many strategies for first preventing, and then controlling, but not eliminating, pests. It places a priority on fostering a healthy environment in which plants have the strength to resist diseases and insect infestations, and out-compete weeds. Using IPM requires an understanding of the life cycles of pests and beneficial organisms, as well as regular monitoring of their populations. When pest problems are identified, IPM considers all viable solutions and uses a combination of strategies to control pests, rather than relying on pesticides alone. As a last resort some pesticides with low levels of toxicity may be used. More information on IPM is included in Appendix A.

Wetland Regulations and Treatment Measures
The Water Board’s “Policy on the Use of Constructed Wetlands for Urban Runoff Pollution Control” (Resolution No. 94-102) recognizes that stormwater treatment wetlands that are constructed and operated pursuant to Resolution 94-102 and are constructed outside a creek or other receiving water are stormwater treatment systems, and, as such, are not waters of the United States subject to Sections 401 and 404 of the federal Clean Water Act.
Water Efficient Landscaping Requirements

The California Water Conservation in Landscaping Act of 2006 requires municipalities to adopt, by January 1, 2010, landscape water conservation ordinances that are at least as effective with regard to water conservation as the Model Water Efficient Landscape Ordinance prepared by the Department of Water Resources. The Model Ordinance automatically went into effect, on January 1, 2010, in municipalities that have not adopted a local water efficient landscape ordinance.

Most new and rehabilitated landscapes are subject to a water efficient landscape ordinance. The Model Ordinance applies to public landscapes and private development projects including developer-installed single family and multi-family residential landscapes with at least 2,500 square feet of landscape area. The model ordinance also applies to homeowner-provided landscaping if the landscape area is at least 5,000 square feet. Contact the municipality to determine whether your project is subject to the Model Ordinance or a comparable local ordinance.

5.8 Mosquito Control

Some types of stormwater treatment measures are designed to include standing water, and even treatment measures that are designed to eliminate standing water between storms have the potential to retain standing water if they are not properly designed, constructed and maintained.

The Countywide Program developed a Vector Control Plan to help reduce the potential for stormwater treatment measures to breed mosquitoes. The Vector Control Plan describes the need to include physical access for mosquito control staff to monitor and treat mosquitoes, and it includes guidance for designing and maintaining stormwater treatment measures to control mosquitoes. The San Mateo County Mosquito Abatement District staff has identified a five-day maximum allowable water retention time, based on actual incubation periods of mosquito species in this area. With the exception of certain stormwater treatment measures that are designed to hold water permanently (e.g., CDS units and wet ponds), all treatment measures should drain completely within five days to prevent mosquito breeding. **Please note that the design of stormwater treatment measures does not require** that water be standing for five days. **During five days after a rain event, standing water is allowable but not required for the stormwater treatment measure to function effectively.**

Treatment measure designs and maintenance plans must include mosquito control **design and maintenance strategies** from the countywide Vector Control Plan, which are included in Appendix F. Project plans that include stormwater treatment measures (and their maintenance plans), will be routed to the San Mateo County Mosquito Abatement District for review. Project applicants may wish to consult with Mosquito Abatement District staff for guidance.
5.9 Incorporating Treatment with Hydromodification Management

In addition to the requirement to treat stormwater runoff to remove pollutants, the MRP also requires that stormwater runoff be detained and released in a way that prevents increased creek channel erosion and siltation. The amount of stormwater flow and the duration of the flow must be limited to match what occurred prior to the currently proposed development or re-development. These hydromodification management (HM) requirements apply to projects that create one acre or more of impervious surface in most areas of Alameda County. The requirements do not apply to projects that drain directly to the bay or tidal channels nor to projects where stormwater flows into channel segments that have been hardened on three sides and/or are culverted continuously downstream to their outfall in a tidal area.

The HM requirements have been in effect since 2007 and are different from stormwater treatment, low impact development, and flood control requirements. To prevent hydromodification, Flow Duration Control facilities are designed for a range of 10 percent of the two-year up to the ten-year storm. This is different from the sizing criteria that are used for stormwater treatment and LID measures, and it is different from the design criteria used for flood control facilities. Depending on the project, it may be possible to meet the HM requirements and stormwater treatment requirements in one facility, as shown in Figure 5-6.

To help applicants meet the HM requirements, ACCWP developed a Bay Area Hydrology Model (BAHM) with assistance from the municipal stormwater programs in Santa Clara and San Mateo Counties. You can use the BAHM to automatically size stormwater detention measures such as detention vaults, tanks, basins and ponds for Flow Duration Control of post-project runoff (go to www.bayareahydrologymodel.org to download the BAHM). The BAHM also checks the facilities for performance as volume-based stormwater treatment measures, to meet the permit requirements for both stormwater treatment and HM. Chapter 7 gives more detail on HM requirements and the BAHM.

5.10 Treatment Measures in Areas of Bay Fill

Extensive portions of San Mateo County’s bayside consist of historic Bay wetlands that were filled long ago to accommodate development pressure. These areas typically have
high water tables, and the fill soils have a tendency to settle. Both of these characteristics can lead to problems with building foundations. Treatment measures that rely on direct infiltration to treat stormwater, such as infiltration trenches, are inappropriate to use on properties with a high water table. Be sure to consult the infiltration guidance in Appendix E when considering a stormwater treatment measure that relies on infiltration to treat stormwater for your site.

5.11 Treatment Measures in Seismic Hazard Areas

The San Andreas Fault passes through the county near the Skyline Boulevard and I-280 corridors areas before exiting the coast at Mussel Rock Park in Daly City. State law prohibits the location of developments and habitable structures across the trace of active faults, and limits the placement of these types of structures to no less than 50 feet of an active fault trace. Projects located near a fault typically need to incorporate special design features. For example, pipes built across a fault need to accommodate the gradual movement of the tectonic plates that meet at the fault line. If your project is located near a fault line, contact your local jurisdiction to obtain any special requirements for storm drain pipes or other stormwater facilities included in your project.

Steep slopes and areas of Bay fill may also be identified as seismic hazard areas, based on the damage to buildings, bridges, and other structures that may occur in these areas during a major earthquake. To date, stormwater professionals have not identified seismic-induced failure as a threat to stormwater treatment measures located in Bay fill areas or on steep slopes. There are, however, special concerns associated with stormwater treatment measures that rely on infiltration in areas with high water tables or steep slopes. These concerns are addressed in Appendix E.

5.12 Artificial Turf and Stormwater Treatment

Artificial turf often has a permeable synthetic grass layer over a permeable underlay, such as gravel, and a compacted subbase, with a subdrain to collect water and convey it to the storm drain system. The design and installation of artificial turf typically prevent infiltration of runoff to the underlying soils.

Figure 5-7: Example of artificial turf installation (www.madehow.com/Volume-7/Artificial-Turf.html)
When calculating the total area of a project’s new and/or replaced impervious surface, areas of artificial turf are considered pervious, if the underdrain is placed sufficiently high in the gravel base layer, so that the void space in the gravel below the underdrain is sufficient to store and infiltrate the amount of stormwater specified in Provision C.3.d of the MRP. Although using artificial turf in place of natural turf can help conserve water and reduce pesticide and fertilizer use, it is advisable to weigh the benefits against environmental costs, such as the heating effect of artificial turf (as opposed to the cooling effect of natural turf). Concerns have also been raised regarding the potential for toxic chemicals in artificial turf to pollute stormwater. At present, no runoff co-efficient for artificial turf is available.

5.13 Getting Water into Treatment Measures

Stormwater may be routed into stormwater treatment measures using sheet flow or curb cuts. The following pages from the San Mateo County Sustainable Green Streets and Parking Lots Design Guidebook show common curb cut types. An 18-inch width is recommended for curb cuts, to avoid clogging. To avoid erosion, cobbles or other energy dissipater is recommended. A minimum two-inch drop in grade between the impervious surface and the finish grade of the stormwater treatment facility is recommended. This drop in grade needs to take into consideration the height of any vegetation.

Figure 5-8: Cobbles are placed at the inlet to this stormwater treatment measure in Fremont, to help prevent erosion.
Standard Curb Cut: Design Guidance

- Opening should be at least 18 inches wide; for smaller facilities 12” width may be allowed subject to municipal approval.
- Curb cut can have vertical sides or have chamfered sides at 45 degrees (as shown).
- Works well with relatively shallow stormwater facilities that do not have steep side slope conditions.
- Need to slope the bottom of the concrete curb toward the stormwater facility.
- Allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.
- Provide cobbles or other energy dissipater to prevent erosion.

Figure 5-9: This standard curb cut at parking lot rain garden has 45 degree chamfered sides.

Figure 5-10: Standard curb cut: section view (Source: San Mateo Countywide Water Pollution Prevention Program [SMCWPPP] 2009)

Figure 5-11: Standard curb cut: plan view (Source: SMCWPPP 2009)
Standard Curb Cut with Side Wings: Design Guidance

- Opening should be at least 18 inches wide; for smaller facilities 12” width may be allowed subject to municipal approval.
- Works well with stormwater facilities that have steeper side slope conditions.
- Need to slope the bottom of the concrete curb toward the stormwater facility.
- Allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.
- Provide cobbles or other energy dissipater to prevent erosion.

Figure 5-12: The side wings of this standard curb cut help retain the side slope grade on each side of the curb cut opening.

Figure 5-13: Standard curb cut with side wings: cut section view (Source: SMCWPPP 2009)

Figure 5-14: Standard curb cut with side wings: plan view (Source: SMCWPPP 2009)
Wheelstops allow water to flow through frequently spaced openings.

Wheelstops are most common in parking lot applications, but they may also be applied to certain street conditions.

Need to provide a minimum of 6 inches of space between the wheelstop edge and edge of paving. This is to provide structural support for the wheelstop.

Allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.

Provide cobbles or other energy dissipater at the wheel stop opening to prevent erosion.

Figure 5-15: Stormwater runoff enters the stormwater facility through the 3-foot space between these wheelstops. The design could be improved by providing more of a drop in grade between the asphalt and landscape area.

Figure 5-16: Opening between wheelstop curbs: section view (Source: SMCWPPP 2009)

Figure 5-17: Opening between wheelstop curbs: plan view (Source: SMCWPPP 2009)
Grated Curb Cut: Design Guidance

- Grated curb cuts allow stormwater to be conveyed under a pedestrian walkway. The curb cut opening should be at least 18 inches wide; 12” may be allowed for smaller facilities subject to municipal approval.
- Grates need to be ADA compliant and have sufficient slip resistance.
- A 1-to-2 inch high asphalt or concrete berm should be placed on the downstream side of the curb cut to help direct runoff into the curb cut.
- Allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.

Figure 5-18: A grated curb cut allows stormwater to pass under a pedestrian egress zone to the stormwater facility.

Figure 5-19: Grated curb cut: section view (Source: SMCWPPP 2009)

Figure 5-20: Grated curb cut: plan view (Source: SMCWPPP 2009)
Technical Guidance for Specific Treatment Measures

In this Chapter:

- Technical guidance for stormwater treatment measures commonly used in San Mateo County

Technical guidance is provided for the stormwater treatment measures listed in Table 6-1.

<table>
<thead>
<tr>
<th>Treatment Measures</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioretention area, including bioretention swale</td>
<td>6.1</td>
</tr>
<tr>
<td>Flow-through planter box</td>
<td>6.2</td>
</tr>
<tr>
<td>Tree well filter</td>
<td>6.3</td>
</tr>
<tr>
<td>Vegetated buffer strip</td>
<td>6.4</td>
</tr>
<tr>
<td>Infiltration trench</td>
<td>6.5</td>
</tr>
<tr>
<td>Extended detention basin</td>
<td>6.6</td>
</tr>
<tr>
<td>Pervious paving</td>
<td>6.7</td>
</tr>
<tr>
<td>Turf block and permeable joint pavers</td>
<td>6.8</td>
</tr>
<tr>
<td>Green roof</td>
<td>6.9</td>
</tr>
<tr>
<td>Rainwater harvesting and use</td>
<td>6.10</td>
</tr>
<tr>
<td>Media filter</td>
<td>6.11</td>
</tr>
</tbody>
</table>

The technical guidance in this chapter is intended help prepare permit application submittals for your project. Municipalities will require you to prepare more specific drawings taking into consideration project site conditions, materials, plumbing connections, etc., in your application. This technical guidance was developed using best engineering judgment and based on a review of various documents and guidance from Water Board staff as available. We look forward to working with Water Board staff to continue improving this guidance.
6.1 Bioretention Areas

Bioretention areas\(^1\), or “rain gardens,” are concave landscaped areas that function as soil and plant-based filtration devices that remove pollutants through a variety of physical, biological, and chemical treatment processes. Bioretention areas can be any shape, including linear. Linear bioretention areas are sometimes referred to as bioretention swales. Bioretention areas normally consist of the following layers, starting from the top: a surface ponding area, a layer of mulch, planting soil and plants, and an underlying rock layer with an underdrain that connects to the municipal storm drain system.

Bioretention areas are designed to distribute stormwater runoff evenly within the surface ponding area. The water is temporarily stored in the ponding area and percolates through the planting soil, which is engineered to have a high rate of infiltration. From there, the water filters down into the underlying rock layer.

The rock layer of the bioretention area may be designed to either maximize infiltration or prevent infiltration to the underlying soils. In bioretention areas that maximize infiltration, the underdrain is raised 6 inches above the bottom of the rock layer, and there is no liner between the rock layer or planting soil and the surrounding soils. Maximizing infiltration is only allowed where conditions are suitable for infiltration – check with the geotechnical engineer. Where infiltration is precluded, the bioretention area is fully lined with waterproof material, and the underdrain is placed at the bottom of the rock layer.

Design and Sizing Guidelines

DRAINAGE AREA AND SETBACK REQUIREMENTS

- Set back from structures 10’ or as required by structural or geotechnical engineer, or local jurisdiction.
- Area draining to the bioretention area does not exceed 2 acres.

\(^1\) A bioretention area that is unlined and has a raised underdrain in the underlying rock layer to promote infiltration may also be called a “bioinfiltration area.”
Area draining to the bioretention area shall not contain a significant source of soil erosion, such as high velocity flows along slopes not stabilized with vegetation or hardscape.

Areas immediately adjacent to bioretention area shall have slopes more than 0.5% for pavement and more than 1% for vegetated areas.

Bioretention areas, including linear treatment measures, shall not be constructed in slopes greater than 4%, unless constructed as a series of bioretention cells. Separate bioretention cells by check dams up to 24 inches high and at least 25 feet apart. The slope within cells shall not exceed 4%. Bioretention cells are not recommended if overall slope exceeds 8%.

If treatment measure is designed to infiltrate stormwater to underlying soils, a 50-foot setback is needed from septic system leach field.

TREATMENT DIMENSIONS AND SIZING

Bioretention area may be sized to 4% of the impervious surface area on the project site. The area of impervious surface multiplied by 0.04 sizing factor will equal the footprint of the bioretention area. Alternatively, bioretention sizing may be calculated using the flow-based treatment standard, or the combination flow- and volume-based treatment standard described in Section 5.1 based on the flow entering the basin at the treatment flow rate over the initial hours of the storm until the treatment volume is attained.

The bioretention area shall be sized to either:

- Percolate the design treatment flow using a rate of 5 inches per hour. No additional allowance is provided for storage or for infiltration rates in excess of 5 inches per hour; or,
- Store the 24-hour treatment volume based on inflow at the water treatment rate for the initial hours of the storm and outflow by infiltration.

Where there is a positive surface overflow, bioretention areas shall have freeboard of at least 0.2 feet to the lowest structural member versus the 100-year storm water level in the bioretention area, unless local jurisdiction has other requirements.

Where the bioretention area is in a sump that depends on outflow through a catch basin, the bioretention area shall have a freeboard of at least 0.5 feet to the lowest building finished floor elevation (including garage and excluding crawl space) for conditions with the outlet 50 percent clogged, unless local jurisdiction has other requirements. Where the freeboard cannot be provided, emergency pump may be allowed on a case-by-case basis.

Minimum 2 inches between the crest of the emergency outfall riser and elevation of the surface area.

The elevation of the surface area may vary as needed to distribute stormwater flows throughout the surface area.

Side slopes do not exceed 3:1; downstream slope for overflow shall not exceed 3:1.

Surface ponding depths should vary, with a maximum depth of 12 inches. If ponding depths exceed 6 inches, landscape architect shall approve planting palette for desired depth.

The inlet to the overflow catch basin shall be at least 6 inches above the low point of the bioretention planting area.

INLETS TO TREATMENT MEASURE
Flow may enter the treatment measure (see example drawings in Section 5.13):

- As overland flow from landscaping (no special requirements)
- As overland flow from pavement (cutoff wall required)
- Through a curb opening (minimum 18 inches)
- Through a curb drain
- With drop structure through a stepped manhole (refer to Figure 5-3 in Chapter 5)
- Through a bubble-up manhole or storm drain emitter
- Through roof leader or other conveyance from building roof

- Where flows enter the biotreatment measure, allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.
- Cobbles or rocks shall be installed to dissipate flow energy where runoff enters the treatment measure.

VEGETATION
- Plant species should be suitable to well-drained soil and occasional inundation. See planting guidance in Appendix A.
- Shrubs and small trees shall be placed to anchor the bioretention area cover.
- Tree planting shall be as required by the municipality. If larger trees are selected, plant them at the periphery of bioretention area.
- Underdrain trench shall be offset at edge of tree planting zone, as needed, to maximize distance between tree roots and underdrain.
- Use integrated pest management (IPM) principles in the landscape design to help avoid or minimize any use of synthetic pesticides and quick-release fertilizer. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Irrigation shall be provided to maintain plant life.
- Trees and vegetation do not block inflow, create traffic or safety issues, or obstruct utilities.

SOIL CONSIDERATIONS SPECIFIC TO BIORETENTION AREAS
- Planting soil shall have a minimum percolation rate of 5 inches per hour and a maximum percolation rate of 10 inches/hour. Soil guidance is provided in Appendix K. Check with municipality for any additional requirements.
- Bioretention areas shall have a minimum planting soil depth of 18 inches.
- Provide 3-inch layer of mulch in areas between plantings.
- An underdrain system is generally required. Depending on the infiltration rate of in situ soils, the local jurisdiction may allow installation without an underdrain on a case-by-case basis.
- Underdrain trench shall include a 12-inch thick layer of Caltrans Standard Section 68-1.025 permeable material Class 2, or similar municipality-approved material. A minimum 4-inch diameter perforated pipe shall be placed within the backfill layer. To help prevent clogging, two rows of perforation may be used.
- If there is at least a 10-foot separation between the base of the underdrain and the groundwater table, and geotechnical conditions allow, there shall be at least 6-inch separation between the perforated pipe and the base of the trench to allow percolation.

SOIL CONSIDERATIONS FOR ALL BIOTREATMENT SYSTEMS
- Filter fabric shall not be used in or around underdrain trench.
- If there is less than 10 feet separation to the groundwater table, an impermeable fabric shall be placed at the base of the underdrain and the perforated pipe shall be placed on the impermeable fabric.
The underdrain shall include a perforated pipe with cleanouts and connection to a storm drain or discharge point. Clean-out shall consist of a vertical, rigid, non-perforated PVC pipe, with a minimum diameter of 4 inches and a watertight cap fit flush with the ground, or as required by municipality.

There shall be adequate fall from the underdrain to the storm drain or discharge point.

Beginning December 1, 2011, soils in the area of inundation within the facility shall meet biotreatment soil specifications approved by the Regional Water Board (Appendix K), which supersede other soil specifications. The minimum percolation rate for the biotreatment soil is 5 inches per hour. The long-term desired maximum infiltration rate is 10 inches per hour, although initial infiltration rate may exceed this to allow for tendency of infiltration rate to reduce over time.

CONSTRUCTION REQUIREMENTS FOR ALL BIOTREATMENT SYSTEMS

- When excavating, avoid spreading fines of the soils on bottom and side slopes. Remove any smeared soil surfaces and provide a natural soil interface into which water may percolate.
- Minimize compaction of existing soils. Protect from construction traffic.
- Protect the area from construction site runoff. Runoff from unstabilized areas shall be diverted away from biotreatment facility.

MAINTENANCE CONSIDERATIONS FOR ALL TREATMENT MEASURES

- A Maintenance Agreement shall be provided.
- Maintenance Agreement shall state parties’ responsibility for maintenance and upkeep.
- Prepare a maintenance plan and submit with Maintenance Agreement. Maintenance plan templates are in Appendix G.
Figure 6-3: Cross Section, Bioretention Area (side view)

Figure 6-4: Check dam (plan view and profile) for installing a series of linear bioretention cells in sloped area
Figure 6-5: Cross section of bioretention area showing inlet from pavement.

Figure 6-6: Bioretention area in landscaping to treat runoff from rainwater leaders (Not to Scale)
Figure 6-7: Cross section of lined bioretention area, for locations where infiltration is precluded.

Optional mounting parameters:
- Top of mounds at least 2" below crest of overflow riser, low points no more than 12" below crest of overflow riser.

Cleanout with cap at fin. grade (see municipal standard drawing) beginning of line.

Bio-treatment soil (BTS) mix per specs.

12" min. of class II permeable rock per Caltrans specifications or similar municipality-approved material.

Perforated or slotted sloped underdrain (slope at 0.50% min.) with perforations down. See plan for connection to c.b. & for invert elevation.

NOT TO SCALE
See Figure 6-3 for typical overflow.

Note: Surface area of the biotreatment soil shall equal 4% of the area of the site that drains to treatment measure, unless sizing calculations are submitted demonstrating that provision C.3 requirements are met using a smaller surface area.
6.2 Flow-Through Planter

Flow-through planters are designed to treat and detain runoff without allowing seepage into the underlying soil. They can be used next to buildings and other locations where soil moisture is a potential concern. Flow-through planters typically receive runoff via downspouts leading from the roofs of adjacent buildings. However, flow-through planters can also be set level with the ground and receive sheet flow. Pollutants are removed as the runoff passes through the soil layer and is collected in an underlying layer of gravel or drain rock. A perforated pipe underdrain must be directed to a storm drain or other discharge point. An overflow inlet conveys flows that exceed the capacity of the planter.

Best uses
- Treating roof runoff
- Next to buildings
- Dense urban areas
- Locations where infiltration is not desired

Advantages
- Can be adjacent to structures
- Multi-use
- Versatile
- May be any shape
- Low maintenance

Limitations
- Requires sufficient head
- Careful selection of plants
- Requires level installation
- Susceptible to clogging

Figure 6-8: At-grade flow-through planter. Source: City of Emeryville

TREATMENT DIMENSIONS AND SIZING
- Flow-through planters may be designed with a 4% sizing factor (percentage of the surface area of planter compared to the surface area of the tributary impervious area). The area of impervious surface multiplied by 0.04 sizing factor will equal the footprint of the flow-through planter. Alternatively, calculations may be performed using either the hydraulic sizing criteria for flow-based treatment measures or the hydraulic sizing criteria for combination flow- and volume-based treatment measures, included in Section 5.1.
- Install an overflow weir adequate to meet municipal drainage requirements.
- Flow-through planters can be used adjacent to building and within setback area.
- Flow-through planters can be used above or below grade.
- Size overflow trap for building code design storm, set trap below top of planter box walls.
- Planter wall set against building should be higher to avoid overflow against building.
- Elevation of the surface area may vary as needed to distribute stormwater flows throughout the surface area.
SAN MATEO COUNTYWIDE WATER POLLUTION PREVENTION PROGRAM

- Minimum 2 and up to 12 inches of water surface storage between the planting surface and crest of overflow weir.

VEGETATION
- Plantings should be selected for viability in a well-drained soil. See planting guidance in Appendix A.
- Use integrated pest management (IPM) principles in the landscape design to help avoid or minimize any use of synthetic pesticides and quick-release fertilizer. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Irrigation shall be provided, as needed, to maintain plant life.
- Trees and vegetation do not block inflow, create traffic or safety issues, or obstruct utilities.

INLETS TO TREATMENT MEASURE
Flow may enter the treatment measure (see example drawings in Section 5.13):
- As overland flow from landscaping (no special requirements)
- As overland flow from pavement (cutoff wall required)
- Through a curb opening (minimum 18 inches)
- Through a curb drain
- With drop structure through a stepped manhole (refer to Figure 5-3 in Chapter 5)
- Through a bubble-up manhole or storm drain emitter
- Through roof leader or other conveyance from building roof
- Where flows enter the biotreatment measure, allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.
- Splash blocks, cobbles or rocks shall be installed to dissipate flow energy where runoff enters the treatment measure.
- For long linear planters, space inlets to planter at 10-foot intervals or install flow spreader.

SOIL CONSIDERATIONS SPECIFIC TO FLOW THROUGH PLANTERS
- Waterproofing shall be installed as required to protect adjacent building foundations.
- If site conditions permit infiltration to underlying soils, waterproofing is not required.
- An underdrain system is generally required for flow through planters. Depending on the infiltration rate of in situ soils, the local jurisdiction may allow installation without an underdrain on a case-by-case basis.
- Underdrain trench shall include a 12-inch thick layer of Caltrans Standard Section 68-1.025 permeable material Class 2, or similar municipality-approved material. A minimum 4-inch diameter perforated pipe shall be placed within the backfill layer. To help prevent clogging, two rows of perforation may be used.
- Planting soil shall have minimum percolation rate of 5 inches per hour and a maximum long-term percolation rate of 10 inches per hour. Soil specifications are provided in Appendix K. Check with municipality for additional requirements.
- The biotreatment soil shall be at least 18 inches thick.
- Provide 3-inch layer of mulch in areas between plantings.

SOIL CONSIDERATIONS FOR ALL BIOTREATMENT SYSTEMS
- Beginning December 1, 2011, soils in the area of inundation within the facility shall meet biotreatment soil specifications approved by the Regional Water Board (Appendix K), which supersedes other soil specifications. The minimum percolation rate for the...
biotreatment soil is 5 inches per hour. The long-term desired maximum infiltration rate is 10 inches per hour, although initial infiltration rate may exceed this to allow for tendency of infiltration rate to reduce over time.

- Filter fabric shall not be used in or around underdrain trench.
- The underdrain shall include a perforated pipe with cleanouts and connection to a storm drain or discharge point. Clean-out shall consist of a vertical, rigid, non-perforated PVC pipe, with a minimum diameter of 4 inches and a watertight cap fit flush with the ground.
- There shall be adequate fall from the underdrain to the storm drain or discharge point.

CONSTRUCTION REQUIREMENTS FOR ALL BIOTREATMENT SYSTEMS

- When excavating, avoid spreading fines of the soils on bottom and side slopes. Remove any smeared soiled surfaces and provide a natural soil interface into which water may percolate.
- Minimize compaction of existing soils. Protect from construction traffic.
- Protect the area from construction site runoff. Runoff from unstabilized areas shall be diverted away from biotreatment facility.

MAINTENANCE CONSIDERATIONS FOR ALL TREATMENT MEASURES

- A Maintenance Agreement shall be provided.
- Maintenance Agreement shall state the parties’ responsibility for maintenance and upkeep.
- Prepare a maintenance plan and submit with Maintenance Agreement. Maintenance plan templates are in Appendix G.

Figure 6-9: Plan view of long, linear planter, with inlets to the planter distributed along its length at 10’ intervals.
Figure 6-10: Plan view of planter designed to disperse flows adequately with only one inlet to planter

Figure 6-11: Cross section A-A of flow-through planter, shows side view of underdrain (Not to Scale)
Optional planting mound parameters:
Top of mounds at least 2" below crest of overflow riser, low points no more than 12" below crest of overflow riser

Cleanout with cap at fin. Grade beginning of line.

Building exterior wall

Underdrain cleanout with rim to fin. Grade. See utility plan for location & invert.

Concrete or other structural planter wall with waterproof membrane

Additional waterproofing on building as needed

SECTION B-B

Figure 6-12: Cross section B-B of flow-through planter, shows cross section of underdrain

Figure 6-13: Above-grade planters. Source: City of Portland

Figure 6-14: Close-up of Flow Through Planter. (Source: City of Portland)
6.3 Tree Well Filter

Tree filters consist of one or multiple chambered pre-cast concrete boxes or hoops with a small tree or shrub planted in a filter bed filled with engineered media or other absorptive filtering media. As stormwater flows into the chamber, large particles settle out on the mulch layer, and then finer particles and other pollutants are removed as stormwater flows through the filtering media. Underground, physical, chemical and biological processes work to remove pollutants from stormwater runoff. Stormwater flows through a specially designed filter media mixture that has a high rate of infiltration. The mixture immobilizes some pollutants, which may be decomposed and volatilized, or incorporated into the biomass of the tree filter system's micro/macro fauna and flora. Stormwater runoff flows through the media and into an underdrain system at the bottom of the container, where the treated water is discharged. Tree filters are similar in concept to bioretention areas in function and applications, with the major distinction that a tree filter has been optimized for high volume/flow treatment, therefore the size of treatment area is proportionally less. A tree filter takes up little space and may be used on highly developed sites such as landscaped areas, green space, parking lots and streetscapes. A tree filter is adaptable and may be used for developments, in all soil conditions to meet stormwater treatment needs. **Beginning December 1, 2011**, manufactured tree well filters, and other tree well filters with long-term rates of infiltration that exceed 10 inches per hour, will be allowed only in Special Projects, as described in Appendix J.

Best Uses
- Limited space
- Parallel to roadways

Advantages
- Aesthetic
- Small surface land use
- Blends with the landscape

Limitations
- Can clog without maintenance
- High installation cost
- Systems with very high infiltration rates are allowed only in Special Projects beginning December 2011

Figure 6-15: Non-proprietary tree well filters in Fremont use bio-retention soils with an infiltration rate of 5 to 10 inches per hour. Spacing the units closely together provides a total tree well filter surface area that is 4 percent of the impervious surface area from which stormwater runoff is treated.
Design and Sizing Guidelines

- Flows in excess of the treatment flow rate shall bypass the tree filter to a downstream inlet structure or other appropriate outfall.
- Tree filters cannot be placed in sump condition; therefore tree filters shall have flow directed along a flow line of curb and gutter or other lateral structure. Do not direct flows directly to a tree filter.
- If a proprietary tree filter is used, it shall be reviewed by the manufacturer before installation.
- For proprietary tree filters, manufacturer will size the tree filter to the impervious surface of a site. The manufacturer shall certify the ratio of impervious area to treatment area for the project. For example, Filterra states that a tree filter of 6 x 6-feet can treat 0.25 acres of impervious surface.
- Proprietary tree filters are available in multi-sized pre-cast concrete drop in boxes, Sizes range from 4 x 6-feet up to 6 x 12-feet boxes.

INLETS TO TREATMENT MEASURE

Flow may enter the treatment measure (see example drawings in Section 5.13):

- As overland flow from landscaping (no special requirements)
- As overland flow from pavement (cutoff wall required)
- Through a curb opening (minimum 18 inches)
- Through a curb drain
- With drop structure through a stepped manhole (refer to Figure 5-3 in Chapter 5)
- Through a bubble-up manhole or storm drain emitter
- Through roof leader or other conveyance from building roof

Where flows enter the biotreatment measure, allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.

- Cobbles or rocks shall be installed to dissipate flow energy where runoff enters the treatment measure.

VEGETATION

- Suitable plant species are identified in Appendix A planting guidance.
- Use integrated pest management (IPM) principles in the landscape design to help avoid or minimize any use of synthetic pesticides and quick-release fertilizer. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Irrigation shall be provided, as needed, to maintain plant life.
- Trees and vegetation do not block inflow, create traffic or safety issues, or obstruct utilities.

SOIL REQUIREMENTS SPECIFIC TO TREE WELL FILTERS

- Filter media in tree well filter shall be specialized for expected site pollutant loads.
- Beginning December 1, 2011, if the long-term infiltration rate of media exceeds 10 inches per hour, use of the tree well filter will not be allowed, except for Special Projects (see Appendix J).
- An underdrain system is required for tree well filters.
- Underdrain trench shall include a 12-inch thick layer of Caltrans Standard Section 68-1.025 permeable material Class 2, or similar municipality-approved material. A minimum 4-inch diameter perforated pipe shall be placed within the backfill layer. To help prevent clogging, two rows of perforation may be used.
If there is at least a 10-foot separation between the base of the underdrain and the groundwater table, and other conditions allow infiltration, there shall be at least 6-inch separation between the perforated pipe and the base of the trench to allow percolation.

SOIL CONSIDERATIONS FOR ALL BIOTREATMENT SYSTEMS

- Filter fabric shall not be used in or around underdrain trench.
- If there is less than 10 feet separation to the groundwater table, an impermeable fabric shall be placed at the base of the underdrain and the perforated pipe shall be placed on the impermeable fabric.
- The underdrain shall include a perforated pipe with cleanouts and connection to a storm drain or discharge point. Clean-out shall consist of a vertical, rigid, non-perforated PVC pipe, with a minimum diameter of 4 inches and a watertight cap fit flush with the ground, or as required by municipality.
- There shall be adequate fall from the underdrain to the storm drain or discharge point.
- Beginning December 1, 2011, soils in the area of inundation within the facility shall meet biotreatment soil specifications approved by the Regional Water Board (Appendix K), which supersede other soil specifications. The minimum percolation rate for the biotreatment soil is 5 inches per hour. The long-term desired maximum infiltration rate is 10 inches per hour, although initial infiltration rate may exceed this to allow for tendency of infiltration rate to reduce over time.

CONSTRUCTION REQUIREMENTS FOR ALL BIOTREATMENT SYSTEMS

- When excavating, avoid spreading fines of the soils on bottom and side slopes. Remove any smeared soiled surfaces and provide a natural soil interface into which water may percolate.
- Minimize compaction of existing soils. Protect from construction traffic.
- Protect the area from construction site runoff. Runoff from unstabilized areas shall be diverted away from biotreatment facility.

MAINTENANCE CONSIDERATIONS FOR ALL TREATMENT MEASURES

- A Maintenance Agreement shall be provided.
- Maintenance Agreement shall state the parties’ responsibility for maintenance and upkeep. Prepare a maintenance plan and submit with Maintenance Agreement. Maintenance plan templates are in Appendix G.

Figure 6-16: Non-proprietary Tree Filter with Overflow Bypass. Source: University of New Hampshire Environmental Research Group, 2006
Figure 6-17: Cut Away View. Source: Americast, 2006. The use of this photo is for general information only, and is not an endorsement of this or any other proprietary stormwater treatment device.
6.4 Vegetated Buffer Strip

Vegetated buffer strips (grassed buffer strips, filter strips, and grassed filters) are vegetated surfaces that are designed to treat sheet flow from adjacent surfaces. Vegetated buffer strips function by slowing runoff velocities and allowing sediment and other pollutants to settle and by providing some infiltration into underlying soils. Vegetated buffer strips were originally used as an agricultural treatment practice and have more recently evolved into an urban practice. With proper design and maintenance, vegetated buffer strips can provide relatively high pollutant removal. In addition, the public views them as landscaped amenities and not as stormwater infrastructure.

Design and Sizing Guidelines

TREATMENT DIMENSIONS AND SIZING
- Strip shall be sized as long as the site will reasonably allow. The width in the direction of flow shall be at least:
 - 5 feet where the length of flow across an impervious surface is less than 10-feet in the direction of flow.
 - At least 50 percent of the length of flow across an impervious surface where the length of flow across an impervious surface is between 10 and 30 feet in the direction of flow.
 - At least 15 feet where the length of flow across an impervious surface is between 30 feet and 60 feet in the direction of flow.
- Level spreaders shall be used if the length of flow across an impervious surface is greater than 60 feet in the direction of flow. The level spreader shall distribute flows over a length that will provide equivalent discharge per linear foot of level spreader as if the flow to the vegetated buffer strip was from a surface with 60-feet length in the direction of flow.
- Slopes should not exceed 1-foot Vertical to 4-foot Horizontal (1:4).

Best Uses
- Roadside shoulders
- Landscape buffer

Advantages
- Minimal maintenance
- Reliable
- Aesthetic appeal
- Adjustable to suit site

Limitations
- No large drainage areas
- Thick cover necessary
- Large size requirements
- Minimal detention provided
- Strip shall be free of gullies or rills.
- Planting soil will be to a minimum depth of at least 6 inches. Native soil may be used as a planting soil if approved by the landscape architect.
- Strip shall be free of gullies or rills.

VEGETATION
- Either grass or a diverse selection of other low growing, drought tolerant, native vegetation should be specified. Vegetation whose growing season corresponds to the wet season is preferred. See planting guidance in Appendix A.
- Use integrated pest management (IPM) principles in the landscape design to help avoid or minimize any use of synthetic pesticides and quick-release fertilizer. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Irrigation shall be provided, as needed, to maintain plant life.
- Trees and vegetation do not block inflow, create traffic or safety issues, or obstruct utilities.

INLETS
- Flow may enter the treatment measure (see example drawings in Section 5.13):
 - As overland flow from landscaping (no special requirements)
 - As overland flow from pavement (cutoff wall required)
 - Through a curb opening (minimum 18 inches)
 - Through a curb drain
 - With drop structure through stepped manhole (refer to Figure 5-3 in Chapter 5)
 - Through a bubble-up manhole or storm drain emitter
 - Through roof leader or other conveyance from building roof
- Where flows enter the biotreatment measure, allow a change in elevation of 4 to 6 inches between the paved surface and biotreatment soil elevation, so that vegetation or mulch build-up does not obstruct flow.
- If runoff is piped or channeled to the strip, a level spreader must be installed to create sheet flow.

SOIL CONSIDERATIONS SPECIFIC TO VEGETATED BUFFER STRIPS
- Check with municipality for planting soil requirements. Except where other municipal requirements apply, planting soil shall have a minimum percolation rate of 2 inches per hour and a maximum percolation rate of 10 inches/hour. If native soils do not meet this percolation requirement, import soil meeting the Countywide Program's dewatering soil guidelines shall be used in the area of inundation.
- Planting soil will be to a minimum depth of at least 6 inches.
- No underdrain trench is needed where native soils are Hydrologic Soil Group A or B.
- When placed on native hydrologic soil group C and D soils, drainage must be provided to allow gravity drainage of the treatment soils. This may consist of underdrain trenches or other means to assure that the biotreatment soil is able to fully dewater after storm event.
- Provide 3-inch layer of mulch in areas between plantings.

SOIL CONSIDERATIONS FOR ALL BIOTREATMENT SYSTEMS
- Underdrain trench shall include a 12-inch thick layer of Caltrans Standard Section 68-1.025 permeable material Class 2, or similar municipality-approved material.
— If there is less than 10 feet separation to the groundwater table, an impermeable fabric shall be placed at the base of the underdrain and the perforated pipe shall be placed on the impermeable fabric.
— The underdrain shall include a perforated pipe with cleanouts and connection to a storm drain or discharge point. Clean-out shall consist of a vertical, rigid, non-perforated PVC pipe, with a minimum diameter of 4 inches and a watertight cap fit flush with the ground.
— There shall be adequate fall from the underdrain to the storm drain or discharge point.
— Beginning December 1, 2011, soils in the area of inundation within the facility shall meet biotreatment soil specifications approved by the Regional Water Board (Appendix K), which supersede other soil specifications. The minimum percolation rate for the biotreatment soil is 5 inches per hour. The long-term desired maximum infiltration rate is 10 inches per hour, although initial infiltration rate may exceed this to allow for tendency of infiltration rate to reduce over time.

CONSTRUCTION REQUIREMENTS FOR ALL BIOTREATMENT SYSTEMS
— When excavating, avoid spreading fines of the soils on bottom and side slopes. Remove any smeared soiled surfaces and provide a natural soil interface into which water may percolate.
— Minimize compaction of existing soils. Protect from construction traffic.
— Protect the area from construction site runoff. Runoff from unstabilized areas shall be diverted away from biotreatment facility.

MAINTENANCE CONSIDERATIONS FOR ALL TREATMENT MEASURES
— A Maintenance Agreement shall be provided.
— Maintenance Agreement shall state the parties’ responsibility for maintenance and upkeep.
— Prepare a maintenance plan and submit with Maintenance Agreement. Maintenance plan templates are in Appendix G.

Figure 6-19: Plan View, Vegetated Buffer Strip
FLUSH CONCRETE CURB OR SIMILAR AS NECESSARY

IMPERVIOUS AREA

FLOW

0-INCHES OF BIO-TREATMENT SOIL PER SPECIFICATIONS

15-FOOT MINIMUM

12" OF CLASS II PERMEABLE ROCK PER CALTRANS SPECIFICATIONS

INLET OR CONVEYANCE SWALE IF REQUIRED BY MUNICIPALITY

UNDERDRAIN MAY BE REQUIRED IN TYPES C AND TYPE D SOILS

4" DIA. PERFORATED SLOPED UNDERDRAIN (SLOPE AT 0.5% MIN) WITH PERFORATIONS DOWN, SEE PLAN FOR CONNECTION TO CATCH BASIN & FOR INVERT ELEVATION.

BIO-TREATMENT SOIL WILL BE OF A MINIMUM DEPTH OF AT LEAST 6 INCHES.

15% MAXIMUM SLOPE, 2% MINIMUM SLOPE, 0.5% MINIMUM SLOPE WITH UNDERDRAIN, 15 FOOT MINIMUM WIDTH

LONGITUDINAL LENGTH = LONGITUDINAL LENGTH OF CONTRIBUTING AREA

STRIP SHALL BE FREE OF GULLIES OR RILLS.

Figure 6-20: Profile View, Vegetated Buffer Strip
6.5 Infiltration Trench

Infiltration trenches are appropriate in areas with well-drained (Type A or B) native soils. Project applicants may wish to consult with Mosquito Abatement District staff for guidance regarding mosquito controls. An infiltration trench is a long, narrow, excavated trench backfilled with a stone aggregate, and lined with a filter fabric. Runoff is stored in the void space between the stones and infiltrates through the bottom and into the soil matrix. Infiltration trenches perform well for removal of fine sediment and associated pollutants. Pretreatment using buffer strips, swales, or detention basins is important for limiting amounts of coarse sediment entering the trench, which can clog and render the trench ineffective. Infiltration practices, such as infiltration trenches, remove suspended solids, particulate pollutants, coliform bacteria, organics, and some soluble forms of metals and nutrients from stormwater runoff. The infiltration trench treats the design volume of runoff either underground or at grade. Pollutants are filtered out of the runoff as it infiltrates the surrounding soils. Infiltration trenches also provide groundwater recharge and preserve base flow in nearby streams.

Design and Sizing Guidelines

DRAINAGE AREA AND SETBACK CONSIDERATIONS
- When the drainage area exceeds 5 acres, other treatment measures shall be considered.
- Infiltration trenches work best when the upgradient drainage area slope is less than 5 percent. The downgradient slope shall be no greater than 20 percent to minimize slope failure and seepage.
- In-situ/undisturbed soils shall have a low silt and clay content and have percolation rates greater than 0.5 inches per hour. In-situ testing is required to confirm percolation rate of trench site. CASQA’s BMP Handbook recommends against using infiltration trenches in Type C or D soils.

Best Uses
- Limited space
- Adjacent to roadways
- Landscape buffers

Advantages
- Increases groundwater recharge
- Removes suspended solids
- Used with other BMPs
- No surface outfalls

Limitations
- Susceptible to clogging; fails with no maintenance
- No high water tables
- Infiltration rate of existing soils must exceed 0.5 in/hr
- No steep slopes
- Drainage area less than 5 acres

Figure 6-21. Infiltration Trench. Source: CASQA, 2003
There shall be at least 10 feet between the bottom of the trench and the groundwater table to prevent potential groundwater problems.

Trenches shall also be located at least 100 feet upgradient from water supply wells.

A setback of 100 feet from building foundations is recommended, unless a smaller setback is approved by geotechnical engineer and local standard.

TREATMENT DIMENSIONS AND SIZING

- The infiltration trench shall be sized to store the full 48-hour water quality volume.
- A site-specific trench depth can be calculated based on the soil infiltration rate, aggregate void space, and the trench storage time. The stone aggregate used in the trench is normally 1.5 to 2.5 inches in diameter, which provides a void space of 35 to 40 percent. A minimum drainage time of 6 hours shall be provided to ensure satisfactory pollutant removal in the infiltration trench. Trenches may be designed to provide temporary storage of storm water. Trench depths are usually between 3 and 8 feet, with a depth of 8 feet most commonly used.
- The trench surface may consist of stone or vegetation (contact local municipality to determine if vegetation is allowed) with inlets to evenly distribute the runoff entering the trench. Runoff can be captured by depressing the trench surface or by placing a berm at the down gradient side of the trench. The basic infiltration trench design utilizes stone aggregate in the top of the trench to promote filtration; however, this design can be modified by substituting pea gravel for stone aggregate in the top 1-foot of the trench. Typically, there is about 35 to 40% void space within the rock.
- Use trench rock that is 1.5 to 2.5 inches in diameter or pea gravel to improve sediment filtering and maximize the pollutant removal in the top 1 foot of the trench.
- Place permeable filter fabric around the walls and bottom of the trench and 1 foot below the trench surface. The filter fabric shall overlap each side of the trench in order to cover the top of the stone aggregate layer. The filter fabric prevents sediment in the runoff and soil particles from the sides of the trench from clogging the aggregate. Filter fabric that is placed 1 foot below the trench surface will maximize pollutant removal within the top layer of the trench and decrease the pollutant loading to the trench bottom, reducing frequency of maintenance.
- The infiltration trench shall drain within 5 days to avoid vector generation.
- An observation well is recommended to monitor water levels in the trench. The well can be 4 to 6-inch diameter PVC pipe, which is anchored vertically to a foot plate at the bottom of the trench.

INLET TO THE TREATMENT MEASURE

- A vegetated buffer strip at least 5-feet wide, swale or detention basin shall be established adjacent to the infiltration trench to capture large sediment particles in the runoff before runoff enters the trench. If a buffer strip or swale is used, installation should occur immediately after trench construction using sod instead of hydroseeding. The buffer strip shall be graded with a slope between 0.5 and 15 percent so that runoff enters the trench as sheet flow. The vegetated buffer strip or detention basin shall be sized according to Sections 6.4 and 6.6 respectively.
- If runoff is piped or channeled to the trench, a level spreader shall be installed to create sheet flow.
IF VEGETATION IS ALLOWED AT TRENCH SURFACE

- Infiltration trenches can be modified by adding a layer of organic material (peat) or loam to the trench subsoil. This modification enhances the removal of metals and nutrients through adsorption. The modified trenches are then covered with a permeable geotextile membrane overlain with topsoil and grass or stones.
- If surface landscaping of the trench is desired, contact local municipality to determine if this is allowed.
- Plant species should be suitable to well-drained soil. See planting guidance in Appendix A.
- Use integrated pest management (IPM) principles in the landscape design to help avoid or minimize any use of synthetic pesticides and quick-release fertilizer. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Irrigation shall be provided as needed to maintain plant life.

CONSTRUCTION REQUIREMENTS

- The drainage area must be fully developed and stabilized with vegetation before constructing an infiltration trench. High sediment loads from unstabilized areas will quickly clog the infiltration trench. During project construction, runoff from unstabilized areas shall be diverted away from the trench into a sedimentation control BMP until vegetation is established.
- When excavating, avoid spreading fines of the soils on bottom and sides. Remove any smeared soiled surfaces and provide a natural soil interface into which water may percolate.
- Minimize compaction of existing soils. Protect from construction traffic.

MAINTENANCE CONSIDERATIONS FOR ALL TREATMENT MEASURES

- A Maintenance Agreement shall be provided.
- Maintenance Agreement shall state the parties’ responsibility for maintenance and upkeep.
- Prepare a maintenance plan and submit with Maintenance Agreement. Maintenance plan templates are in Appendix G.

Figure 6-22: Infiltration trench cut-away view
Figure 6-23: Cutaway view: Infiltration Trench with Observation Well
6.6 Extended Detention Basin

Extended detention ponds (a.k.a. dry ponds, dry extended detention basins, detention ponds, extended detention ponds) are basins whose outlets have been designed to detain the stormwater runoff from a water quality design storm for some minimum time (e.g., 48 hours) to allow particles and associated pollutants to settle. Unlike wet ponds, these facilities do not have a permanent pool. They can also be used to provide flood control by including additional flood detention storage above the treatment storage area.

Beginning December 1, 2011, projects will no longer be allowed to meet stormwater treatment requirements with stand-alone extended detention basins that are designed to treat stormwater through the settling of pollutants and gradual release of detained stormwater through an orifice. However, this type of extended detention basin could be used as part of a treatment train, in which the basin stores a large volume of water, which is gradually released to a bioretention area that meets the new MRP requirements for biotreatment soils and surface loading area.

Design and Sizing Guidelines

TREATMENT DIMENSIONS AND SIZING

- Extended detention basins shall be sized to capture the required water quality volume over a 48-hour period. At least 10 percent additional storage shall be provided to account for storage lost to deposited sediment.
- Extended detention basin shall have no greater than 3:1 side slopes.
- The optimal basin depth is between 2 and 5 feet.
- A safety bench shall be added to the perimeter of the basin wall for maintenance when basin is full.

Best uses

- Detain low flows
- Can be expanded to detain peak flows
- Sedimentation of suspended solids
- Sites larger than 5 acres

Advantages

- Easy to operate
- Inexpensive to construct
- Treatment of particulates
- Low maintenance

Limitations

- Storage area available
- Moderate pollutant removal

Figure 6-24: Extended Detention Basin. Photograph courtesy of Bill Southard (DES Architects and Engineers)
Extended detention basin shall empty within five days of the end of a 6-hour, 100-year storm event to avoid vector generation.

A 12-foot wide maintenance ramp leading to the bottom of the basin and a 12-foot wide perimeter access road shall be provided. If not paved, the ramp shall have a maximum slope of 5 percent. If paved, the ramp may slope 12 percent.

The extended detention basin shall have a length to width ratio of at least 1.5:1.

A fixed vertical sediment depth marker shall be installed in the sedimentation forebay. The depth marker shall have a marking showing the depth where sediment removal is required. The marking shall be at a depth where the remaining storage equals the design water quality volume.

The detention basin is a volume-based treatment measure and requires detention time to be effective. The basin shall not empty more than 50% of its treatment volume in less than 24 hours to ensure treatment of runoff.

INLETS TO TREATMENT MEASURE

- The inlet pipe shall have at least 1 foot of clearance to the basin bottom.
- Piping into the extended detention basin shall have erosion protection. As a minimum, a forebay with a 6-inch thick layer of Caltrans Section 72, Class 2 rock slope protection shall be placed at and below the inlet to the extent necessary for erosion protection.
- Check with municipality regarding trash screen requirements. Trash screen installation may be required upstream of the pipe conveying water into the pond, in order to capture litter and trash in a central location where it can be kept out of the pond until it is removed.

OUTLETS AND ORIFICES

The outlet shall be sized with a drawdown time of 48 hours for the design water quality volume. The outlet shall have two orifices at the same elevation sized using the following equation:

\[
a = \left(7 \times 10^{-5}\right) \times A \times (H-H_o)^{5/2} / CT
\]

Where:
- \(a\) = area of each orifice in square feet
- \(A\) = surface area of basin at mid-treatment storage elevation (square feet)
- \(H\) = elevation of basin when filled by water treatment volume (feet)
- \(H_o\) = final elevation of basin when empty (bottom of lowest orifice) (feet)
- \(C\) = orifice coefficient (0.6 typical for drilled orifice)
- \(T\) = drawdown time of full basin (hours)

The orifices shall each be a minimum diameter of 1 inch. Extended detention basins are not practical for small drainage areas because the minimum orifice diameter cannot be met.

Each orifice shall be protected from clogging using a screen with a minimum surface area of 50 times the surface area of the openings to a height of at least 6 times the diameter. The screen shall protect the orifice openings from runoff on all exposed sides.

For each outlet, documentation shall be provided regarding adequacy of outlet protection, and a larger stone size may be necessary depending on the slope and the diameter of the outfall.
VEGETATION
- Plant species should be adapted to periods of inundation. See planting guidance in Appendix A.
- Use integrated pest management (IPM) principles in the landscape design to help avoid or minimize any use of synthetic pesticides and quick-release fertilizer. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Irrigation shall be provided as needed to maintain plant life.
- If vegetation is not established by October 1st, sod shall be placed over loose soils. Above the area of inundation, a 1-year biodegradable loose weave geofabric may be used in place of sod.

SOIL CONSIDERATIONS
- If the groundwater level is within 10 feet of the ground surface, a liner shall be provided.
- Beginning December 1, 2011, if the extended detention basin is designed to meet biotreatment requirements, soils in the area of inundation within the facility shall meet biotreatment soil specifications approved by the Regional Water Board (see Appendix K). The minimum percolation rate for the biotreatment soil is 5 inches per hour. Long-term desired maximum infiltration rate is 10 inches per hour, although initial infiltration rate may exceed this to allow for tendency of infiltration rate to reduce over time.
- Beginning December 1, 2011, if extended detention basin is designed per biotreatment requirements, the surface area shall be no smaller than what is required to accommodate a 5” per hour stormwater runoff surface loading rate. A combination flow and volume design basis, described in Section 5.1, may be used.
- Beginning December 1, 2011, if the extended detention basin is NOT designed to meet biotreatment requirements, it cannot function as a stand-alone treatment measure and may only be used as part of a treatment train, followed by a biotreatment measure.

MAINTENANCE CONSIDERATIONS FOR ALL TREATMENT MEASURES
- A Maintenance Agreement shall be provided.
- Maintenance Agreement shall state the parties’ responsibility for maintenance and upkeep.
- Prepare a maintenance plan and submit with Maintenance Agreement. Maintenance plan templates are in Appendix G.

Figure 6-25. Side View of Riser
Figure 6-26. Top View of Riser (Square Design)

Figure 6-27. Plan View, Typical Extended Detention Basin

NOTES:
LENGTH (L) SHALL BE AT LEAST 1.5 TIMES THE WIDTH (W)

Figure 6-27. Plan View, Typical Extended Detention Basin
6.7 Pervious Paving

Pervious paving is used for areas with light vehicle loading and lightly trafficked areas, such as automobile parking areas. Table 6-2 shows possible applications for different types of pervious paving. The term pervious paving describes a system comprised of a load-bearing, durable surface together with an underlying layered structure that temporarily stores water prior to infiltration or drainage to a controlled outlet. The surface is porous such that water infiltrates across the entire surface of the material (e.g., crushed aggregate, porous concrete and porous asphalt). If an area of pervious paving is underlain with pervious soil or pervious storage material, such as a gravel layer sufficient to hold at least the Municipal Stormwater Regional Permit Provision C.3.d volume of rainfall runoff, it is not considered an impervious surface and can function as a self-treating area, as described in Section 4.2. Please note that projects that the CalGREEN Building Code does not define pervious paving in the same way as the MRP. Projects that include pervious paving per CalGREEN requirements must also verify that the pervious paving meets the MRP definition of pervious pavement.

Table 6-2: Types of Pervious Paving and Possible Applications

<table>
<thead>
<tr>
<th>Paver Type</th>
<th>Description</th>
<th>Possible Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous Asphalt</td>
<td>Open-graded asphalt concrete over an open-graded aggregate base, over a draining soil. Contains very little fine aggregate (dust or sand) and is comprised almost entirely of stone aggregate and asphalt binder; surface void content of 12-20%.</td>
<td>Low traffic use, such as parking lots, travel lanes, parking stalls. Surface may be too rough for bicycle path.</td>
</tr>
</tbody>
</table>
Table 6-2: Types of Pervious Paving and Possible Applications

<table>
<thead>
<tr>
<th>Paver Type</th>
<th>Description</th>
<th>Possible Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervious Concrete</td>
<td>A discontinuous mixture of coarse aggregate, hydraulic cement and other cementitious materials, admixtures, and water which has a surface void content of 15-25% allowing water to pass through.</td>
<td>Sidewalks and patios, low traffic volume and low speed (less than 30 mph limit) bikeways, streets, travel lanes, parking stalls, and residential driveways.</td>
</tr>
</tbody>
</table>

Source: Design Guidelines for Permeable Pavements, Redwood City

Design and Sizing Guidelines
The design of each layer of the pavement must be determined by the likely traffic loadings and the layer’s required operational life. To provide satisfactory performance, the following criteria shall be considered.

SUBGRADE AND SITE REQUIREMENTS
- The sub-grade shall be able to sustain traffic loading without excessive deformation.
- The sub-grade shall be either ungraded in-situ material with a percolation rate of 5-inches per hour, backfilled with coarser fill material, or installed with an underdrain that will remove detained flows within the pervious paving and base.
- Depth to groundwater shall be at least 10 feet from bottom of base.
- Permeable pavements must be laid on a relatively flat slope, generally 5% or flatter. If permeable pavements are laid on steep slopes, the open graded crushed aggregate base may tend to migrate downhill, causing the surface to deform.

BASE LAYER
- The granular capping and base layers shall give sufficient load-bearing to provide an adequate construction platform and base for the overlying pavement layers.
- The base aggregate particles shall be selected based on strength and durability when saturated and subjected to wetting and drying.
- To allow for subsurface water storage, the base must be open graded, crushed stone (not pea gravel), meaning that the particles are of a limited size range, with no fines, so that small particles do not choke the voids between large particles.
- If the base layer is sized to hold at least the Municipal Stormwater Regional Permit Provision C.3.d volume of rainfall runoff, the area of pervious paving is not considered an impervious surface and can function as a self-treating area (see Section 4.2).
- If the base layer has sufficient capacity in the void space to store the C.3.d amount of runoff for both the area of pervious paving and the area that drains to it, it is not considered an impervious surface and can function as a self-retaining area, described in Section 4.2.
- If an underdrain is used, allow a minimum of 2 inches between underdrain and bottom of base course. To be considered a self-treating area or self-retaining area, the underdrain shall be positioned above the portion of the base layer that is sized to meet the C.3.d sizing criteria.
- Design calculations for the base shall quantify the following:
- Type of soil, type of fill if used, permeability of base, k-values (psi/cubic inch)
- Compressibility (clay and silt contents, organics, muck)
- Traffic loading (in 18,000 lb. single axle loads)
- Drainage routing of detained flows within the pervious pavement and base
 (infiltration through minimum 5-inch per hour base into in-situ soils, or collection in
 underdrain if percolation rate cannot be met with in-situ soils)

PAVEMENT MATERIALS
- The pavement materials shall not crack or suffer excessive rutting under the influence of
 traffic. This is controlled by the horizontal tensile stress at the base of these layers.
- Pervious pavements require a single size grading to give open voids. The choice of
 materials is therefore a compromise between stiffness, permeability and storage
 capacity.

DESIGN AND INSTALLATION
- Design shall be reviewed by manufacturer or National Ready Mixed Concrete
 Association (NRMCA, www.nrmca.org).
- Installation shall be by contractors familiar with pervious paving installation. Only
 contractors with certification from NRMCA should be considered. More information can
 be found at www.concreteparking.org.

Figure 6-29: Surface view of parking lot with pervious paving in lightly-trafficked areas. (Source: Bay
Area Stormwater Management Agencies Association [BASMAA], Start at the Source, 1999)
A maintenance plan shall be provided.

Standards for Ongoing Maintenance and Upkeep:
- Keep landscaped areas well maintained.
- Prevent soil from washing onto the pavement. Pervious pavement surface shall be vacuum cleaned using commercially available sweeping machines at following times:
 - End of winter (April)
 - Mid-summer (July/August)
 - After autumn leaf-fall (November)
- Inspect outlets yearly, preferably before wet season. Remove accumulated trash/debris.
- When vacuum cleaning, inspect pervious paving for any signs of hydraulic failure.

As needed maintenance:
- If routine cleaning does not restore infiltration rates, then reconstruction of part of the pervious surface may be required.
- The surface area affected by hydraulic failure should be lifted, if possible, for inspection of the internal materials to identify the location and extent of blockage.
- Lift and replace surface materials as needed to restore infiltration.
- Geotextiles may need complete replacement.
- Sub-surface layers may need cleaning and replacing.
- Removed silts may need to be disposed of as controlled waste.
6.8 Turf Block and Permeable Joint Pavers

Turf block and permeable joint pavers are used for areas with light vehicle loading, such as driveways, low-volume streets, street shoulders, and parking stalls (Table 6-3). The terms turf block and permeable joint pavers describe systems comprised of a load-bearing, durable surface together with a pervious soil that temporarily stores water, with overflow conveyed to an outlet. The turf block surface is constructed of impermeable blocks separated by spaces and joints, filled with soil and planted with turf, through which the water can drain. Alternately, the spaces and joints of turf block may be filled with gravel. Permeable joint pavers may be impermeable bricks, cobbles, natural stone, or modular unit concrete pavers with permeable joints to allow runoff to percolate to subsurface layers. Some pavers are designed with notched corners (Figure 6-37) to facilitate infiltration.

Where soil permeability is low, an underdrain system connected to the storm drain system may be needed. Areas of turf block may be considered “self-treating areas,” and may drain directly to the storm drain system if they do not receive runoff from impervious areas, as allowed by the municipality. If an area of permeable joint pavers is underlain with pervious soil or pervious storage material, such as a gravel layer sufficient to hold at least the Municipal Stormwater Regional Permit Provision C.3.d volume of rainfall runoff, it is not considered an impervious surface and can function as a self-treating area, as described in Section 4.2. Please note that projects that the CalGREEN Building Code does not define pervious paving in the same way as the MRP. Projects that include permeable joint pavers per CalGREEN requirements must also verify that the pavers meet the MRP definition of pervious pavement.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Possible Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick</td>
<td>Solid unit paver laid on a permeable base with sand joints.</td>
<td>Driveways, walkways, patios, public sidewalks, plazas, low volume streets</td>
</tr>
</tbody>
</table>

Table 6-3: Permeable Joint Paver Types and Possible Applications
Table 6-3:
Permeable Joint Paver Types and Possible Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Possible Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Stone</td>
<td>Laid on pervious surface area in random pattern with wide sand, gravel, or soil joints (from 1/2 to 4 inches).</td>
<td>Driveways, walkways, patios, sidewalks, plazas, low-use parking stalls</td>
</tr>
<tr>
<td>Turf Blocks</td>
<td>Open celled unit paver filled with soil and planted with turf. Sometimes the cells are filled with crushed rock only.</td>
<td>Areas of low flow traffic and infrequent parking, residential driveways and overflow parking areas, emergency access roads, utility roads, street shoulders, and outer edges of commercial and retail parking lots where low-use spaces are located.</td>
</tr>
<tr>
<td>Unit Pavers</td>
<td>Discrete units set in a pattern on a prepared base. Typically made of precast concrete in shapes that form interlocking patterns, some unit paver shapes form patterns that include an open cell to increase permeability. Solid unit pavers are made of impermeable materials, but can be spaced to expose a permeable joint set on a permeable base.</td>
<td>Parking stalls, private driveways, walkways, patios, low volume streets, and travel lanes, and bikeways.</td>
</tr>
</tbody>
</table>

Source: Design Guidelines for Permeable Pavements, Redwood City

Design and Sizing Guidelines

The design of each layer of the pavement must be determined by the likely traffic loadings and their required operational life. To provide satisfactory performance, the following criteria shall be considered:

- The subgrade shall be able to sustain traffic loading without excessive deformation.
- The turf block or permeable joint pavers shall give sufficient load-bearing to provide an adequate support for loading.
- The paver materials should not crack or suffer excessive breakage under the influence of traffic.
- Both turf block and pavers require a single size, grading base to provide open voids. The choice of materials is thus a compromise between stiffness, permeability and storage capacity.
- The uniformly graded single size material cannot be compacted and is liable to move when construction traffic passes over it. This effect can be reduced by the use of angular crushed rock material with a high surface friction.
- The base shall be sized for strength and durability of the aggregate particles when saturated and subjected to wetting and drying. To allow for subsurface water storage, the base must be open graded, crushed stone (not pea gravel), meaning that the particles are of a limited size range, with no fines, so that small particles do not choke the voids between large particles. If subsurface water storage is not an objective, uncompacted soil with a sand bed to support the turf block or paver may be considered. The base should be reviewed by manufacturer of turf blocks or pavers. Check with the local jurisdiction regarding any local requirements for the base layer.
- If the base layer is sized to hold at least the Municipal Stormwater Regional Permit Provision C.3.d volume of rainfall runoff, the area of pervious paving is not considered an impervious surface and can function as a self-treating area (see Section 4. 2).
- If the base layer has sufficient capacity in the void space to store the C.3.d amount of runoff for both the area of pervious paving and the area that drains to it, it is not considered an impervious surface and can function as a self-retaining area, described in Section 4.3.

- If an underdrain is used, allow a minimum of 2 inches between underdrain and bottom of base course. To be considered a self-treating area or self-retaining area, the underdrain shall be positioned above the portion of the base layer that is sized to meet the C.3.d sizing criteria.

Figure 6-33: Profile of Brick Paver Installation (BASMAA, 1999)

Figure 6-34: Profile of Natural Stone Paver Installation (BASMAA, 1999)

Figure 6-35: Profile of Turf Block Installation (BASMAA, 1999)
MAINTENANCE
A maintenance plan shall be provided.

Standards for Ongoing Maintenance and Upkeep:

- Keep landscaped areas well maintained.
- The surface of the unplanted turf block and permeable joint pavers shall be vacuum cleaned using commercially available sweeping machines at the following times:
 - End of winter (April)
 - Mid-summer (July / August)
 - After autumn leaf-fall (November)
- Planted turf block can be mowed, as needed.
- Inspect outlets yearly, preferably before the wet season. Remove trash and debris.
- When vacuum cleaning is conducted, inspect turf block and pavers for any signs of hydraulic failure.

As needed maintenance:

- If routine cleaning does not restore infiltration rates, reconstruct the part of pervious surface that is not infiltrating.
- The surface area affected by hydraulic failure should be lifted, if possible, for inspection of the internal materials to identify the location and extent of the blockage.
- Surface materials should be lifted and replaced if damaged by brush (or abrasive) cleaning.
- Deposits may need to be disposed of as controlled waste.
- Replace permeable joint materials as necessary.
6.9 Green Roof

A green roof can be either **extensive**, with a 3 to 7 inches of lightweight substrate and a few types of low-profile, low-maintenance plants, or **intensive** with a thicker (8 to 48 inches) substrate, more varied plantings, and a more garden-like appearance. The extensive installation at the Gap Headquarters in San Bruno (Figure 6-39), has experienced relatively few problems after nearly a decade in use. Native vegetation may be selected to provide habitat for endangered species of butterflies, as at the extensive green roof of the Academy of Sciences in San Francisco.

Design and Sizing Guidelines
- Green roofs are considered “self-treating areas” or “self-retaining areas” and may drain directly to the storm drain, if they meet the following requirements specified in the MRP:
 - The green roof system planting media shall be sufficiently deep to provide capacity within the pore space of the media to capture 80 percent of the average annual runoff.
 - The planting media shall be sufficiently deep to support the long-term health of the vegetation selected for the green roof, as specified by the landscape architect or other knowledgeable professional.
- Design and installation is typically completed by an established vendor.
- Extensive green roof systems contain layers of protective materials to convey water away from roof deck. Starting from the bottom up, a waterproof membrane is installed, followed by a root barrier, a layer of insulation (optional), a drainage layer, a filter fabric for fine soils, engineered growing medium or soil substrate, and plant material.
- The components of intensive green roofs are generally the same as those used in extensive green roofs, with differences in depth and project-specific design application.
- Follow manufacturer recommendations for slope, treatment width, and maintenance.

Best Uses
- For innovative architecture
- Urban centers

Advantages
- Minimizes roof runoff
- Reduces “heat island” effect
- Absorbs sound
- Provides bird habitat
- Longer “lifespan” than conventional roofs

Limitations
- Sloped roofs require steps
- Non-traditional design
- High installation costs

Figure 6-39: Parking Lot with Turf-Covered Roof, Google building, Mountain View
Either grass or a diverse selection of other low growing, drought tolerant, native vegetation should be specified. Vegetation whose growing season corresponds to the wet season is preferred. See Appendix A for planting guidance.

- Green roof shall be free of gullies or rills.
- Irrigation is typically required.
- Beginning December 1, 2011, green roofs will need to meet green roof specifications (to be included in Appendix L) approved by the Regional Water Board in order to be considered biotreatment measures.

Maintenance
- Inspection required at least semiannually. Confirm adequate irrigation for plant health.
- Fertilize and replenish growing media as specified by landscape designer and as needed for plant health. See Appendix A for alternatives to quick release fertilizers.

See www.greenroofs.com for information about and more examples of green roofs.

Figure 6-40: Extensive Green Roof at Gap Headquarters, San Bruno (William McDonough & Partners)

Figure 6-41: Intensive Green Roof, Kaiser Center Parking Garage, Oakland

Figure 6-42: Plants selected to support endangered butterflies (California Academy of Sciences, San Francisco)
6.10 Rainwater Harvesting and Use

Rainwater harvesting systems are engineered to store a specified volume of water with no discharge until this volume is exceeded. Storage facilities that can be used to harvest rainwater include above-ground or below-ground cisterns, open storage reservoirs (e.g., ponds and lakes), and various underground storage devices (tanks, vaults, pipes, arch spans, and proprietary storage systems). Rooftop runoff is the stormwater most often collected in harvesting/use systems, because it often contains lower pollutant loads than surface runoff, and it provides accessible locations for collection. Rainwater can also be stored under hardscape elements, such as paths and walkways, by using structural plastic storage units, such as RainTank, or other proprietary storage products. Water stored in this way can be used to supplement onsite irrigation needs, typically requiring pumps to connect to the irrigation system. Rain barrels are often used in residential installations, but typically collect only 55 to 120 gallons per barrel; whereas systems that are sized to meet Provision C.3 stormwater treatment requirements typically require thousands of gallons of storage.

Uses of Harvested Water
Uses of captured water may potentially include irrigation, indoor non-potable use such as toilet flushing, industrial processing, or other uses. As indicated in Appendix I, the Harvest and Use, Infiltration and Evapotranspiration Feasibility/Infeasibility Criteria Report (Feasibility Report) identified toilet flushing as the use that is most likely to generate sufficient demand to use the C.3.d amount of runoff. The demand for indoor toilet flushing is most likely to equal to the C.3.d

Best Uses
- High density residential or office towers with high toilet flushing demand.
- Park or low density development with high irrigation demand.
- Industrial use with high non-potable water demand.

Advantages
- Helps obtain LEED or other credits for green building.

Limitations
- High installation and maintenance costs.
- Low return on investment.
- Municipal permitting requirements not standardized.

Figure 6-43: Rainwater is collected and used for flushing toilets at Mills College, Oakland.
amount of stormwater in high rise residential or office projects, and in schools. Irrigation demand may equal the C.3.d amount of runoff in projects with a very high percentage of landscaping.

System Components
Rainwater harvesting systems typically include several components: (1) methods to divert stormwater runoff to the storage device, (2) an overflow for when the storage device is full, and (3) a distribution system to get the water to where it is intended to be used. Filtration and treatment systems are typically required for indoor uses of harvested rainwater (see Table 6-2).

LEAF SCREENS, FIRST-FLUSH DIVERSERS, AND ROOF WASHERS
These features may be installed to remove debris and dust from the captured rainwater before it goes to the tank. The initial rainfall of any storm often picks up the most pollutants from dust, bird droppings and other particles that accumulate on the roof surface between rain events. Leaf screens remove larger debris, such as leaves, twigs, and blooms that fall on the roof. A first-flush diverter routes the first flow of water from the catchment surface away from the storage tank to remove accumulated smaller contaminants, such as dust, pollen, and bird and rodent feces. A roof washer may be placed just ahead of the storage tank and filters small debris for systems using drip irrigation. Roof washers consist of a tank, usually between 30- and 50-gallon capacity, with leaf strainers and a filter.

TREATMENT METHODS
The Texas Manual on Rainwater Harvesting (3rd Edition, 2006) identifies two methods of treatment used in rainwater harvesting systems for indoor use: chlorine and UV light. Chlorine has a longer history of use in the US, and is still reported to be used by rainwater harvesters, but it has drawbacks. Chlorine combines with decaying organic matter in water to form trihalomethanes, a by-product that has been found to cause cancer in laboratory rats; some users may find the taste and smell of chlorine objectionable; and chlorine does not kill *Giardia* or *Cryptosporidium*, which are cysts protected by their outer shells. *UV light has more recently become common practice* in U.S. utilities. Bacteria, virus, and cysts are killed by exposure to UV light. The water must go through sediment filtration before the ultraviolet light treatment because pathogens can be shadowed from the UV light by suspended particles in the water. In water with very high bacterial counts, some bacteria will be shielded by the bodies of other bacteria cells. UV lights are benign: they disinfect without leaving behind any disinfection by-products, and they use minimal power for operation.

<table>
<thead>
<tr>
<th>Table 6-2</th>
<th>Typical Water Quality Guidelines from the Texas Rainwater Harvesting Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Minimum Water Quality Guidelines</td>
</tr>
<tr>
<td>Non-potable indoor uses</td>
<td>- Total coliforms < 500 cfu per 100 mL</td>
</tr>
<tr>
<td></td>
<td>- Fecal coliforms < 100 cfu per 100 mL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor uses</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Source: Low Impact Development Manual for Southern California, Low Impact Development Center, 2010, which, in turn, cites the Texas Rainwater Harvesting Manual for this information.
Design and Sizing Guidelines

HYDRAULIC SIZING
- If a rainwater harvesting system will be designed to meet Provision C.3 stormwater requirements, there must be sufficient demand to use 80 percent of the average annual rainfall runoff, as specified in Provision C.3.d.
- If the project’s completed Rainwater Harvesting Worksheet (or other project-specific calculation) indicates that there is sufficient demand, size the cistern (or other storage device) to achieve the maximum drawdown time indicated in Table 9 of the Feasibility Report (included in Appendix I).

DESIGN GUIDELINES FOR ALL SYSTEMS
- Equip water storage facilities covers with tight seals, to reduce mosquito-breeding risk. Follow mosquito control guidance in Appendix F.
- Water storage systems in proximity to the building may be subject to approval by the building official. The use of waterproofing as defined in the building code may be required for some systems, and the municipality may require periodic inspection. Check with municipal staff for the local jurisdiction’s requirements.
- Do not install rainwater storage devices in locations where geotechnical/stability concerns, such as a slope above 10%, may prohibit the storage of large quantities of water.
- Provide separate piping without direct connection to potable water piping. Dedicated piping should be color coded and labeled as harvested rainwater, not for consumption. Faucets supplied with non-potable rainwater should include signage identifying the water source as non-potable and not for consumption.
- The harvesting system must not be connected to the potable water system at any time.
- When make-up water is provided to the harvest/reuse system from the municipal system, prevent cross contamination by providing a backflow prevention assembly on the potable water supply line, an air gap, or both, to prevent harvested water from entering the potable supply. Contact local water system authorities to determine specific requirements.

DESIGN GUIDELINES FOR INDOOR USE
- Avoid harvesting water for indoor use from roofs with architectural copper, which may discolor porcelain.
- Provide filtration of rainwater harvested for indoor non-potable use, as required by the plumbing code and any municipality-specific requirements.

DESIGN GUIDELINES FOR IRRIGATION USE
- Water diverted by a first flush diverter may be routed to a landscaped area large enough to accommodate the volume, or a hydraulically-sized treatment measure.
- First flush diverters shall be installed in such a way that they will be easily accessible for regular maintenance.
- Do not direct to food-producing gardens rainwater harvested from roofs with wood shingles or shakes (due to the leaching of compounds), asphalt shingles, tar, lead, or other materials that may adversely affect food for human consumption.

MAINTENANCE CONSIDERATIONS FOR ALL TREATMENT MEASURES
- A Maintenance Agreement shall be provided and shall state the parties’ responsibility for maintenance and upkeep.
- Prepare a maintenance plan and submit with Maintenance Agreement.
6.11 Media Filter

Stormwater media filters are usually two-chambered, including a pretreatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber. There are currently three types of manufactured stormwater media filter systems. Two are similar in that they use cartridges of a standard size (filter types B and C, seen above). The cartridges are placed in vaults; the number of cartridges are a function of the design flow rate. The water flows laterally (horizontally) into the cartridge to a center well, then downward to an underdrain system. The third product (type A) is a flatbed filter, similar in appearance to sand filters.

Note: Beginning December 1, 2011, the use of media filters will not be allowed, except as may be indicated in Special Projects criteria (Appendix J).

Design and Sizing Guidelines

There are currently three types of stormwater filter systems:

Filter System A:
- This system is similar in appearance to a slow-rate sand filter.
- The media is cellulose material treated to enhance its ability to remove hydrocarbons and other organic compounds. The media depth is 12 inches.

Best Uses
- Limited space
- Underground
- Used following a separation unit, such as swirl concentrator

Advantages
- Less area required
- Customized media
- Customized sizing

Limitations
- No removal of trash without pre-treatment
- High installation and maintenance costs.
- Media filtration will be allowed only for some “special projects” beginning December 2011

Figure 6-44. System C Filter Cartridge, Typically Used as Part of Treatment Train. Source: CONTECH Stormwater Solutions, 2006. (Note: The proprietary media filters shown are for general information only and are not endorsed by the Countywide Program. An equivalent filter may be used.)
• Operates at a very high rate, at peak flows. Normal operating rates are much lower assuming that the stormwater covers the entire bed at flows less than the peak rate.
• System uses a swirl concentrator for pretreatment.
• As the media is intended to remove sediments (with attached pollutants) and organic compounds, it would not be expected to remove dissolved pollutants such as nutrients and metals unless they are complexed with the organic compounds that are removed.

Filter System B:
• Uses a simple vertical filter consisting of 3-inch diameter, 30-inch high slotted plastic pipe wrapped with fabric.
• The standard fabric has nominal openings of 10 microns. The stormwater flows into the vertical filter pipes and out through an underdrain system. Several units are placed vertically at 1-foot intervals to give the desired capacity.
• The filter bay has a typical emptying time of 12 to 24 hours.
• In a cartridge filter the media is fabric, therefore the system may not remove dissolved pollutants. It does remove pollutants attached to the sediment that is removed.

Filter System C:
• The system uses vertical cartridges in which stormwater enters radially to a center well within the filter unit, flowing downward to an underdrain system.
• Flow is controlled by a passive float valve system, which prevents water from passing through the cartridge until the water level in the vault rises to the top of the cartridge.
• Full use of the entire filter surface area and the volume of the cartridge is assured by a passive siphon mechanism as the water surface recedes below the top of the cartridge.
• A balance between hydrostatic forces assures a more or less equal flow potential across the vertical face of the filter surface. The filter surface receives suspended solids evenly in this system.
• Absent the float valve and siphon systems, the amount of water treated over time per unit area in a vertical filter is not constant, decreasing with the filter height; furthermore, a filter would clog unevenly.
• Restriction of the flow using orifices ensures consistent hydraulic conductivity of the cartridge as a whole by allowing the orifice, rather than the media, whose hydraulic conductivity decreases over time, to control flow.
• Manufacturers offer several media types used singly or in combination (dual- or multi-media). Total media thickness is about 7 inches. Some media, such as fabric and perlite, remove only suspended solids (with attached pollutants). Media that also remove dissolved pollutants include compost, zeolite, and iron-infused polymer. Pretreatment occurs in an upstream unit and/or the vault within which the cartridges are located. Water quality volume or flow rate (depending on the particular product) is determined by local governments or sized so that 85% of the annual runoff volume is treated.

All 3 types of media filter shall have a pretreatment system in place such as a swirl concentrator.

MAINTENANCE
• A Maintenance Agreement shall be provided.
- Maintenance Agreement shall state the parties’ responsibility for maintenance and upkeep.
- Prepare a maintenance plan and submit with Maintenance Agreement. Maintenance plan templates are in Appendix G.

Figure 6-45. Cut Away Profile Views, System A Filter

Modified Delaware Media Filter
Figure 6-46. Profile View, Typical System C Filter Array. Source: CONTECH Stormwater Solutions, 2006. (Note: The proprietary media filters shown are for general information only and are not endorsed by Countywide Program.

Figure 6-47. Plan View, Typical System C Filter Array. Source: CONTECH Stormwater Solutions, 2006. (Note: The proprietary media filters shown are for general information only and are not endorsed by Countywide Program.
Hydromodification Management Measures

In this Chapter
- Explanation of hydromodification
- Description of hydromodification management controls
- Summary of requirements for reducing erosive flows from development projects

7.1 What is Hydromodification?

Changes in the timing and volume of runoff from a site are known as “hydrograph modification” or “hydromodification”. When a site is developed, much of the rainwater can no longer infiltrate into the soils, so it flows offsite at faster rates and greater volumes. As a result, erosive levels of flow occur more frequently and for longer periods of time in creeks and channels downstream of the project. Hydrograph modification is illustrated in Figure 7-1, which shows the stormwater peak discharges after rainstorms in an urban watershed (the red, or dark, line) and a less developed (the yellow, or light, line). The axes indicate the volume of water discharged, and the time over which it is discharged.

In watersheds with large amounts of impervious surface, the larger volumes, faster rates and extended durations of flows that cause erosion often cause natural creeks or earthen channels to erode, as the channel enlarges in response to the increased flows. Problems from this additional erosion often include property damage, degradation of stream habitat and loss of water quality, and have not been addressed by traditional detention designs. Figures 7-2 and 7-3 illustrate the effect of increasing urbanization on stormwater volumes.
Figure 7-1: Stormwater Peak Discharges in Urban (Red) and Less Developed (Yellow) Watersheds (Source: NEMO-California Partnership, No Date)

Figure 7-2: Effects of Urbanization on the Local Hydrologic Cycle (Source: 2000 Maryland Stormwater Design Manual)
7.2 Hydromodification Management (HM) Controls

Since 2007, new hydromodification management (HM) techniques have been required in areas across the San Francisco Bay Area that are susceptible to hydromodification. These techniques focus on retaining, detaining or infiltrating runoff and matching post-project flows and durations to pre-project patterns for a specified range of smaller, more frequent rain events, to prevent increases in channel erosion downstream. Within San Mateo County, a simple map-based approach is used to determine which parts of the drainage network are susceptible to hydromodification impacts. Projects that meet certain criteria, and from which runoff passes through the susceptible areas, are be required to incorporate one or more HM measures in the design in order to reduce erosive flows from a wide range of runoff conditions. HM measures can be grouped into three types:

- **Integrated management practices**, or IMPs, which are small-scale, stormwater management techniques that are generally distributed throughout a project site. IMPs are designed to minimize directly-connected impervious areas, slow runoff, and maximize infiltration (where appropriate) as described in *Start at the Source* (BASMAA, 1999, www.flowstobay.org – click on Business, then New Development). IMPs may also include the use of bioretention areas, vegetated buffer strips, roofs that detain water, and multi-functional landscape areas.
Flow duration control measures are used to manage excess runoff from the site after IMPs are applied. These "end-of-pipe" measures mitigate the effects of hydrograph changes from stormwater collected in pipes and channels before the runoff is discharged to a natural channel that could suffer adverse effects. Examples include extended detention basins, wet ponds and constructed wetlands. Please note that there is a difference between the design approach for sizing measures to remove pollutants from stormwater and the approach for designing flow duration controls to prevent an increase in the potential for creek bank erosion. The treatment of stormwater pollutants targets capture of 80% of average runoff volume, which means that treatment measures will be bypassed every one to two years. Flow duration controls must be sized to control the statistical duration of a wide range of flow levels under simulated runoff conditions. Depending on pre-project and post-project conditions, the required detention volume is likely to be greater than the capture volume required for treatment. Flow duration controls are typically used on-site, but larger facilities, such as detention basins, may be sized to control runoff from a regional drainage area.

In-creek or restorative measures that modify susceptible watercourses to withstand projected increases in runoff flows and durations without increasing erosion or other impacts to beneficial uses. In-creek measures are more complicated to use than the IMPs and flow duration controls, and are best suited for creeks or channels that have already received impacts from previous development and have only localized channel instability. Examples include biostabilization techniques using roots of live vegetation roots to stabilize banks and localized structural measures such as rock weirs, boulder clusters or deflectors. These measures will not automatically provide HM protection for channel reaches farther downstream and may require longer planning timelines and cooperation among multiple jurisdictions compared to flow duration controls.

7.3 Which Projects Need to Implement HM?

Unless it is a single family home that is not part of a larger of development, your project will be required to comply with the HM requirements if it meets the following applicability criteria:

- The project creates and/or replaces one acre or more of impervious surface,
- The project will increase impervious surface over pre-project conditions, AND
- The project is located in a susceptible area, as shown on the HM Control Area Map.

Appendix H shows the Countywide HM Control Area Map. The boundary between areas that are subject to HM requirements and areas that are not generally follows major roadways, such as El Camino Real and Alameda de Las Pulgas. Appendix H includes a series of maps that show more detail for locations in which the boundary does not follow major roadways. Areas exempt from HM requirements tend to be heavily developed...
areas of the bayside, while the more open and residential hillside, and coastside areas are subject to the HM requirements. Four municipalities -- East Palo Alto, Foster City, Daly City, and Colma -- are totally exempt (except for some small areas of parkland in which no development is expected to occur). All of the other municipalities have some portions of their jurisdictions where development may occur that would be subject to HM requirements.

Please note that Attachment E of the MRP allows for the following exceptions to the HM control area boundary shown on the map:

- A project located on one or more parcels in the exempt area that drain into the HM control area would be subject to HM requirements.
- A project in the HM Control Area from which runoff drains only through a hardened channel and/or enclosed pipe along its entire length before directly discharging into a waterway in the exempt area or into tidal waters would be exempt from HM requirements, if the project applicant demonstrates, in a statement signed by an engineer or qualified environmental professional, that this condition is met.

Also note that projects located in susceptible areas are encouraged to include hydrologic source control measures for HM if they are likely to cause hydrograph changes, even if they create and/or replace less than one acre of impervious surface.

7.4 Hydromodification Management (HM) Requirements

The HM objective is to control stormwater discharges from non-exempt development projects so that these discharges do not increase the erosion potential of the receiving creek over the pre-project (existing) condition. This is accomplished by implementing four performance criteria:

- Projects shall provide hydromodification management (HM) controls as needed to maintain the pre-project creek erosion potential. These controls may include a combination of on-site or off-site (regional drainage area and/or in-creek) control measures. An erosion potential (Ep) of up to 1.0 shall be maintained for creek segments downstream of the discharge point. Ep can be expressed as the ratio of post-project to pre-project erosive “work” done on the creek.
- On-site stormwater controls that are designed to provide flow duration control to the pre-project condition shall comply with the HM requirements. Flow duration controls shall be designed so that the post-project stormwater discharge rates and durations match those of the pre-project condition, from 10 percent of the pre-project two-year peak flow up to the pre-project 10-year peak flow.
- Projects may use off-site control measures in lieu of or in combination with on-site controls, where an approved plan -- including an appropriate funding

Flow Duration Control looks at the full range of flows in a simulated long-term history, and is not directly comparable to approaches based on one or a few synthetic “design storms”.

Key Points

CHAPTER 7 PAGE 117
mechanism – is in place and accounts for the creek changes expected to result from changes in project runoff conditions. The off-site control measures or combination of controls shall be designed to achieve the management objective of keeping the erosion potential (Ep) at 1.0 or less, from the point of discharge to the creek as far down stream as potential impacts will occur.

7.5 How to Implement HM Requirements

Projects subject to HM requirements need to consider HM at every stage of project development, following the step-by-step instructions for C.3 submittals in Chapter 3. The most effective use of land and resources may require a combination of IMPs, flow duration control facilities and in-creek measures, which are described in Section 7.2. In general, the strategy for designing HM measures should:

- **Start with site design** to minimize the amount of runoff to be managed (see Chapter 4).

- Where possible, **maximize infiltration** to further reduce detention requirements. Note that infiltration is limited by site constraints such as slope stability concerns, low-permeability soils or groundwater protection constraints.

- Use **flow duration controls** to detain the remaining calculated runoff from the site enough to **control its release** in a way that meets the remaining runoff design requirements. This may be accomplished with a measure that also provides volume-based treatment, such as an extended detention basin. For some project locations, off-site options may be available to reduce or eliminate the need for onsite detention.

7.5.1 Flow Duration Control

Flow Duration Control (FDC) differs from traditional “design storm” approaches used to design detention facilities for flood control or water quality treatment. Instead of specifying static holding times for one or a few discrete events, the Flow Duration standard manages runoff discharge over the full range of runoff flow levels predicted through continuous hydrologic simulation modeling, based on a long-term precipitation record. Flow Duration Control requires that the increase in surface runoff resulting from new impervious surfaces be **retained on-site with gradual discharge** either to groundwater through infiltration, losses by evapotranspiration, and/or discharge to the downstream watercourse at a level below the critical flow that causes creek channel erosion. **Critical flow**, or Qc, is the lower threshold of in-stream flows that contribute to sediment erosion and sediment transport or effective work. The duration of channel flows below Qc may be increased indefinitely without significant contribution to hydromodification impacts.

7.5.2 Application of Flow Duration Control to Project Areas

The Flow Duration approach involves a continuous model that applies a time series of at least 20 years of rainfall records to a watershed area or project site to generate a simulated stormwater runoff record based on two sets of inputs, one representing future development
and the other representing pre-project conditions. The 20-year precipitation record is the minimum length necessary to capture the range of runoff conditions that are cumulatively responsible for most of the erosion and sediment transport in the watershed, primarily flow levels that would recur at average intervals of 10 years or less in the pre-project condition. The design objective is to **preserve the pre-project cumulative frequency** distribution of flow durations and sizes under post-project flows. This is done with a combination of site design, infiltration and detention. Typically the post-project increase in surface runoff volume is routed through a **flow duration control basin** or other structure that detains a certain portion of the increased runoff and discharges it through a **specialized outlet structure** (see Figure 7-4).

The flow duration basin, tank or vault is designed conceptually to incorporate multiple pools that are filled with different frequencies and discharge at different rates. The low-flow pool is the bottom level designed to capture and retain small to moderate size storms, the initial portions of larger storms, and dry weather flows. These flows are discharged through the lowest orifice which allows continuous **discharge below the critical flow rate** for a project (Qcp). Successively higher-flow pools store and release higher but less frequent flows through other orifices or graded weir notches to approximate the pre-project runoff durations. In practice the multiple pools are usually integrated into a single detention basin, tank or vault that works as a unit with the specialized outlet structure. Matching the pre-project flow durations is achieved through fine-tuning of the number, heights and dimensions of orifices or weir notches, as well as depth and volume of the basin, tank or vault.

As shown in the example chart of Figure 7-4, the post-project flow duration curve (red, or dark line) is reduced by the facility to remain **at or below the pre-project curve** (yellow, or light line), except for flows less than Qcp. Minor exceedances are permissible at a limited number of higher flows since at other flow levels the post-project duration is actually less than the pre-project condition.

If feasible, **combining flow duration and water quality treatment** into a single facility reduces the overall land requirements for stormwater management. Adequate maintenance of the low-flow orifice or notch is critical to proper performance. The outlet may be in a protective enclosure to reduce risk of clogging. Please note that Flow Duration facilities are subject to **Operations and Maintenance reporting and verification requirements similar to those for numerically sized treatment measures**.
7.5.3 Bay Area Hydrology Model (BAHM)

To facilitate the simulation modeling aspect of FDC for project applicants and their engineers, the Countywide Program collaborated with the Santa Clara and Alameda counties' stormwater programs to develop a Bay Area Hydrology Model **software package** that is adapted from Version 3 of the Western Washington Hydrology Model (WWHM) developed by Clear Creek Solutions for the State of Washington Department of Ecology (WDOE). The WWHM was specifically developed to help engineers design facilities to meet a Flow Duration Control standard for development projects.

The BAHM, which may be downloaded from the Program's website together with county-specific data, includes:

- Databases to automatically assign default *rainfall conditions* for a project location selected within the County boundary.

- A user interface for developing a *schematic drainage model* of the project site, with forms for entering areas of land use or impervious surface for multiple sub-basins.

Figure 7-4: Schematic flow duration pond and flow duration curves matched by varying discharge rates according to detained volume. (Source: ACCWP, 2006)

Legend:

- A-outlet pipe riser
- B-low flow orifice
- C-intermediate orifice (1 shown)
- D-weir notch (V-type shown)
- E-freeboard above riser (typically 1 foot)
Continuous simulation modeling of **pre-project and post-project runoff** from the site using actual long-term rainfall records appropriately scaled for the project location.

A design module for sizing a **FDC detention facility** and designing the discharge structure to meet the Flow Duration standard for matching post-project and pre-project duration-frequency curves. Pre-project and post-project runoff are compared at a “point of compliance” selected by the designer, usually near the point where runoff leaves the project area.

Options to check facility sizing for **volume-based treatment**, and incorporate runoff reductions attributable to some common hydrologic source control measures.

Standardized output **report files** that can be saved in Word format, and include all information about data inputs, model runs, facility design, and summary of the hydrological statistics showing the compliance of post-project flow duration curves with the Flow Duration standard. Project input and output data can also be saved in Excel and other formats for other uses.

7.6 Area-Specific HM Provisions

Individual municipalities may have special policies or ordinances for creek protection applicable in all or part of their jurisdictions. **Contact municipal staff** from your jurisdiction to identify any special local provisions that may encourage or affect specific forms of HM implementation. Examples of area-specific HM provisions can include:

- Watershed-based land-use planning measures, such as creek buffers, which may be incorporated in local General Plans, zoning codes or watercourse ordinances.
- Special permitting provisions for project design and review of projects on streamside properties.
- Specific plans for regional HM measures or in-stream restoration projects.
- Any Equivalent Limitation Protocols that may be proposed, in accordance with Provision C.3.f.vii of the municipal stormwater permit, as alternatives to the default HM requirements in specific jurisdictions or watersheds.

7.7 When On-site HM is Impracticable

Under specific conditions, the MRP allows projects to meet HM requirements by providing for or contributing financially to an off-site alternative HM project.

7.7.1 Determining Impracticability

In order to use an off-site alternative HM project, you would need to demonstrate the following:
 Due to onsite conditions (such as extreme space limitations) the total cost to comply with both HM and stormwater treatment requirements exceeds two percent of the project construction cost, excluding land costs. (When calculating costs of HM and stormwater treatment measures, do NOT include land costs, soil disposal fees, hauling, contaminated soil testing, mitigation, disposal, or other normal site enhancement costs such as landscaping or grading that are required for other development purposes.)

 There is no available regional HM measure to which runoff from your project can be directed. A regional HM measure is considered available if there is a planned location from the regional HM measure AND if an appropriate funding mechanism for the regional HM measure is in place by the time of your project’s construction.

 Meeting the HM requirements by constructing an in-stream measure is not practicable. An in-stream measure is considered practicable if an in-stream measure for your project’s watershed is planned, and an appropriate funding mechanism for the in-stream measure is in place by the time of project construction.

 7.7.2 Requirements for Using an Alternative HM Project
If you have demonstrated that on-site HM is impracticable for your project, you will need to implement the following requirements to use an alternative HM project.

 Include site designs in your project that provide hydrologic source control. Examples include minimizing impervious area, disconnecting roof leaders and providing localized detention.

 Include in your project stormwater treatment measures that collectively minimize, slow and detain runoff to the maximum extent practicable. (This generally includes bioretention areas, flow-through planters, and other stormwater treatment measures that filter runoff through soil or other media.)

 Contribute financially to an alternative HM project, such as a stormwater treatment retrofit, HM retrofit, regional HM control, or in-stream measure that is not otherwise required by the Water Board or other regulatory agency. The contribution shall consist of the difference between two percent of the project construction costs and the cost of the treatment measures at the site (based on calculations described in Section 7.6.1).
Operation and Maintenance

In this Chapter:

- Operation & maintenance requirements for stormwater treatment and flow duration control measures,
- Preparing documentation for maintenance agreements,
- Common maintenance concerns for frequently-used treatment measures

8.1 Summary of O&M Requirements

Maintenance is essential for assuring that stormwater treatment and flow duration control (FDC) measures continue to function effectively and do not cause flooding, provide habitat for mosquitoes, or otherwise become a nuisance. The maintenance requirements described in this chapter apply to stormwater treatment measures and FDC measures included in your project. The operation and maintenance (O&M) process can be organized into five phases, as described below:

- Determining ownership and maintenance responsibility,
- Identifying maintenance requirements when selecting treatment measures,
- Preparing the maintenance plan and other documentation,
- Executing a maintenance agreement or other maintenance assurance, and
- Ongoing inspections and maintenance.

O&M requirements for treatment measures also apply to flow duration control measures where and when they are implemented.
8.1.1 Responsibility for Maintenance

The responsibility for the maintenance of stormwater treatment and FDC measures belongs to the project applicant and/or property owner unless other specific arrangements have been made. Ownership and maintenance responsibility for stormwater treatment measures and FDC measures should be considered at the earliest stages of project planning, typically at the pre-application meeting with municipal staff. The municipal stormwater permit also requires that the project applicant provide a signed statement accepting responsibility for maintenance until this responsibility is legally transferred, as well as ensuring access to municipal, Water Board, and San Mateo County Mosquito Abatement District staff.

8.1.2 Considerations When Selecting Treatment Measures

CONSIDER OPERATION AND MAINTENANCE

When determining which types of treatment measures to incorporate into project plans, be mindful of how maintenance intensive they are. Study the operation manual for any manufactured, proprietary system. Treatment measures must be maintained so that they continue to treat stormwater runoff effectively throughout the life of the project and do not provide habitat for mosquito breeding. Adequate funds must be allocated to support long-term site maintenance. Manufactured, proprietary systems tend to clog easily and therefore require frequent maintenance to ensure that they operate as intended and do not hold standing water. A properly designed and established bioretention area, by contrast, may require little maintenance beyond what is required for normal landscaped areas.

The party responsible for maintenance will also be required to dispose of accumulated residuals properly. Residuals are defined as trash, oil and grease, filter media and fine sediments that are collected from treatment measures that may or may not be contaminated. At present, research generally indicates that residuals are not hazardous wastes and as such, after dewatering, property owners can generally disposed of residuals in the same way they would dispose of any uncontaminated soil.

The USEPA Fact Sheet titled Storm Water O&M Fact Sheet: Handling and Disposal of Residuals (www.epa.gov/npdes/pubs/handdisp.pdf) provides useful information to help property owners dispose of residuals properly. The fact sheet describes the properties of stormwater residuals, O&M requirements for specific types of treatment measures, key elements for a residual handling and disposal program, and specific information on residual disposal from case studies.

For a list of landfills in San Mateo County that accept sediment (“soil”), contaminated or otherwise, visit www.ciwm.ca.gov/SWIS/Search.asp.

Alternatively, property owners may choose to contract with the treatment device manufacturer to maintain their treatment measures. Services typically provided include inspection, maintenance, handling and disposal of all residuals.
CONTROL MOSQUITOES

When selecting and installing stormwater treatment devices, you will need to consider the various environmental, construction, and local factors that may influence mosquito breeding. Except for certain treatment measures designed to hold permanent pools of standing water, treatment measures should **drain completely within five days** to effectively suppress mosquito production. The Countywide Program’s Vector Control Plan includes mosquito control design guidance and maintenance guidance for treatment measures. This guidance is included in Appendix F.

CONSIDER ACCESS

The maintenance agreement for your project will need to guarantee access permission for local municipality staff, the San Mateo County Mosquito Abatement District and Water Board staff to enter the property to verify that maintenance is being conducted in accordance with the maintenance plan, throughout the life of the project. Make sure stormwater treatment and FDC measures are **readily accessible to the inspectors**, and contact municipal staff to determine whether easements will be needed. Stormwater treatment and FDC measures must also be accessible to equipment needed to maintain them. Maintenance needs vary by the type of treatment measure that is used. Review the maintenance requirements described in Section 8.2 to identify the accessibility needs for maintenance equipment. By nature, it is more difficult to provide adequate access for below-ground treatment measures than above-ground treatment measures.

8.1.3 Documentation Required with Permit Application

As part of the building permit application, project applicants typically need to prepare and submit the documents listed below. **Check with the local jurisdiction** for exact requirements.

- A legible conceptual plan of the site, clearly showing the locations of stormwater treatment measures. Letter-sized plans are preferred; legal-sized plans may be accepted.

- Detailed maintenance plan for stormwater treatment and FDC measures, including inspection checklists, as appropriate.

- A standard treatment measure O&M report form, to be attached to a maintenance agreement, or other maintenance assurance.

Please note that requirements may vary from one jurisdiction to another. Ask municipal staff if there are any additional requirements. Appendix G includes templates to assist project applicants in preparing their standard treatment measure O&M report form and maintenance plan. Guidance on preparing these documents is provided in Section 8.2.
8.1.4 Maintenance Agreement or Other Maintenance Assurance

Where a property owner is responsible for maintenance, the property owner is required to enter into a maintenance agreement with the municipality to ensure long-term maintenance of treatment and FDC measures. The agreement will be recorded against the property to run with the title of the land. Contact your local jurisdiction to obtain a copy of its standard maintenance agreement. The maintenance agreements require property owners to conduct maintenance inspections of all stormwater treatment measures, and – depending on the municipality – may require the annual submittal of a Standard Treatment Operation and Maintenance Inspection Report form.

For residential properties where the stormwater treatment measures are located within a common area that will be maintained by a homeowner’s association, language regarding the responsibility for maintenance must be included in the project’s conditions, covenants and restrictions (CC&Rs). Printed educational materials regarding on-site stormwater controls are typically required to be included with the first, and any subsequent, deed transfer. The educational materials typically:

- Explain the post-construction stormwater controls requirements;
- Provide information on what stormwater controls are present;
- Describe the need for maintenance;
- Explain how necessary maintenance can be performed; and
- For the initial deed transfer, describe the assistance that the project applicant can provide.

If stormwater treatment measures are proposed to be located in a public area for transfer to the municipality, these treatment measures must meet the design guidelines specified in Chapter 6 and shall remain the property owner’s responsibility for maintenance until the treatment measures are accepted for transfer.

8.1.5 Ongoing Inspections and Maintenance

After the maintenance agreement is executed, or the municipality approves other maintenance assurance such as CC&Rs, the party responsible for maintenance begins to implement the maintenance plan. Inspection reports are submitted to the municipality as required by the maintenance agreement, or other maintenance assurance.

The municipality, Water Board and San Mateo County Mosquito Abatement District may conduct operation and maintenance verification inspections to make sure that stormwater treatment measures are being maintained. In the event adequate maintenance is not conducted, the municipality will take necessary steps to restore the treatment measures to good
working order. The property owner will be responsible for reimbursing the municipality for expenditures associated with restoring the treatment measures to good working order.

8.2 Preparing Maintenance-Related Documents

This section provides instructions for preparing the following documents that are typically required as parts of the building permit application, if your project includes stormwater treatment measures and/or FDC measures:

- A standard treatment measure O&M report form
- A maintenance plan, including a schedule of maintenance activities.

8.2.1 Standard Treatment Measure O&M Report Form

The municipality may require the property owner, or other responsible party, to submit an annual report summarizing the maintenance and inspections of treatment measures included in the project. To standardize and simplify the reporting process, the property owner submits a “Standard Treatment Measure O&M Report Form” with the building permit application, and the municipality includes the report form as an Exhibit to the maintenance agreement. After the agreement is executed, the property owner, or other responsible party, uses this form to prepare the annual report, which is typically submitted by December 31 of each calendar year. When submitting the completed report form each year, the responsible party will typically be required to attach the inspection forms that were completed during that calendar year.

To help you prepare your Standard Treatment Measure O&M Report Form, a template is included in Appendix G. Check with the local jurisdiction for an electronic version of the template. When using the template to prepare your report form, please insert project-specific information where you find highlighted prompts such as the following:

[[== insert name of property owner/responsible party ==]]

8.2.2 Maintenance Plan

The maintenance plan must be sufficiently detailed to demonstrate to the municipality that stormwater treatment measures and/or FDC measures will receive adequate inspections and maintenance to continue functioning as designed over the life of the project. A maintenance plan typically includes the following elements:

- Contact information for the property owner or other responsible party.

- Project address and, if required, the Assessors Parcel Number and directions to the site.

- Identification of the number, type and location of all stormwater treatment/FDC measures on the site.
- A list of specific, routine maintenance tasks that will be conducted, and the intervals at which they are conducted. (For example, “Inspect treatment measure once a month, using the attached checklist.”)

- An inspection checklist, specific to the treatment/FDC measure(s) included in your project, which indicates the items that will be reviewed during regular maintenance inspections. Completed inspection forms may be required as part of the annual Stormwater Treatment Measure O&M Report, described in Section 8.2.1.

The following materials are available to help you prepare your maintenance plan:

- Maintenance plan templates included in Appendix G.
- A list of common maintenance concerns for frequently-used stormwater treatment measure (see the following pages).

When using a template to prepare your report form, insert project-specific information where you find prompts such as:

Refer to the **treatment measure-specific maintenance information** to prepare your maintenance plan.
BIORETENTION AREAS – COMMON MAINTENANCE CONCERNS:

The primary maintenance requirement for bioretention areas is the regular inspection and repair or replacement of the treatment measure's components. Generally, the level of effort is similar to the routine, periodic maintenance of any landscaped area.

- Conduct monthly inspections as follows:
 - Inspect bioretention area for obstructions and trash.
 - Inspect bioretention area for ponded water. If ponded water does not drain within five days, remove surface soils and replace with sand. If mosquito larvae are observed, contact the San Mateo County Mosquito Abatement District at 650/344-8592.
 - Inspect inlets for channels, exposure of soils, or other evidence of erosion. Clear any obstructions and remove any accumulation of sediment.
 - Conduct a biannual (twice yearly) evaluation of the health of any plants, and remove any dead or diseased vegetation.
 - Treat diseased vegetation, as needed, using preventative and low-toxic measures to the extent possible, and replace any dead plants.
 - The use of pesticides and quick-release synthetic fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
 - Maintain vegetation and the irrigation system. Prune and weed, as needed, to keep the bioretention area neat and orderly in appearance.

Inspect and, if needed, replace mulch before the wet season begins. Mulch should be replaced when erosion is evident or when the bioretention area begins to look unattractive. The entire area may need mulch replacement every two to three years, although spot mulching may be sufficient when there are random void areas.
FLOW-THROUGH PLANTERS – COMMON MAINTENANCE CONCERNS:
Maintenance objectives include maintaining healthy vegetation at an appropriate size; avoiding clogging; and ensuring the structural integrity of the planter and the proper functioning of inlets, outlets, and the high-flow bypass.

- Conduct a biannual (twice yearly) evaluation of the health of the vegetation and remove and replace any dead or dying plants.
- Treat diseased vegetation, as needed, using preventative and low-toxic measures to the extent possible.
- The use of pesticides and quick-release synthetic fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Maintain vegetation and the irrigation system. Prune and weed as needed to keep the flow-through planter neat and orderly in appearance. Prune or remove any overgrown plants or shrubs that may interfere with planter operation. Clean up fallen leaves or debris.
- Before the wet season begins, check that the soil is at the appropriate depth to allow water to temporarily pond above the soil surface and is sufficient to effectively filter stormwater. Remove any accumulations of sediment, litter, and debris. Till or replace soil (specify sandy loam), as necessary. Confirm that soil is not clogging and that the planter will drain within 3-4 hours after a storm event. Inspect and, if needed, replenish mulch.
- Inspect planter box periodically, and after storms, to ensure structural integrity of the box and that the planter has not clogged.
- Periodically inspect downspouts from rooftops or sheet flow from paving to ensure that flow to the planter is unimpeded. Remove any debris and repair any damaged pipes. Check splash blocks or rocks and repair, replace or replenish as necessary.
- Periodically inspect the overflow pipe to make sure that it can safely convey excess flows to a storm drain. Repair or replace any damaged or disconnected piping.
TREE WELL FILTERS – COMMON MAINTENANCE CONCERNS:
Some manufacturers require a maintenance agreement, under which the manufacturer conducts the maintenance. The following maintenance requirements are typical:

- Conduct a biannual (twice yearly) evaluation of the health of trees and any ground cover. Remove any dead, dying, or missing vegetation.
- Treat diseased vegetation, as needed, using preventative and low-toxic measures to the extent possible.
- The use of pesticides and quick-release synthetic fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Maintain vegetation and the irrigation system. Prune and weed as needed to keep the tree well filter neat and orderly in appearance. Clean up fallen leaves or debris.
- Before the wet season begins, check that the media is at the appropriate depth. Remove any accumulations of sediment, litter, and debris. Confirm that the tree well filter is not clogging and will drain per design specifications. Till or replace the media as necessary.
- Inspect tree well filter periodically, and after storms, to ensure that it has not clogged.
- Periodically inspect the overflow pipe to make sure that it can safely convey excess flows to a storm drain. Repair or replace any damaged or disconnected piping.

Figure 8-3: Non-proprietary tree well filter (Source: University of New Hampshire)
VEGETATED BUFFER STRIPS – COMMON MAINTENANCE CONCERNS:
Vegetated buffer strips mainly require vegetation management. Typical maintenance requirements are as follow:

- Mow and irrigate during dry weather to the extent necessary to keep vegetation alive. Where six-inch high grasses are used, the grass height shall be at least three inches after mowing. Where mowed grasses are shown on the plans, the grass shall be mowed when the height exceeds three inches. Dispose of grass clippings properly.
- Remove obstructions and trash from the vegetated buffer strip.
- Conduct monthly inspections as follows:
 - Inspect vegetated buffer strip for and remove obstructions and trash,
 - Confirm that any ponded flow drains within five days after a rainfall event. If ponding is observed for longer than five days, grading is required to improve positive drainage.
 - Confirm that grasses are in good condition.
 - Identify and correct any erosion problems.
- The use of pesticides and quick-release synthetic fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.

Figure 8-4: Vegetated Buffer Strip (Source: California Stormwater Quality Association, 2003)
INFILTRATION TRENCHES – COMMON MAINTENANCE CONCERNS:
The primary maintenance objective is to prevent clogging, which may lead to trench failure. Typical inspection and maintenance tasks are as follows:

- Inspect infiltration trench after large storm events and remove any accumulated debris or material.
- Check the observation well 2 to 3 days after storms to confirm drainage.
- Repair any erosion at inflow or overflow structures.
- Conduct thorough inspection annually, including monitoring of the observation well to confirm that the trench is draining within the specified time.
- Trenches with filter fabric should be inspected annually for sediment deposits by removing a small section of the top layer.
- If inspection indicates that the trench is partially or completely clogged, it shall be restored to its design condition.
- Mow and trim vegetation around the trench as needed to maintain a neat and orderly appearance.
- The use of pesticides and quick-release synthetic fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Routinely remove trash, grass clippings and other debris from the trench perimeter and dispose of these materials properly. Trees or other large vegetation should be prevented from growing adjacent to the trench to prevent damage to the trench.

Figure 8-5: Infiltration Trench (Source: California Stormwater Quality Association)
EXTENDED DETENTION BASINS – COMMON MAINTENANCE CONCERNS:
Primary maintenance activities include vegetation management and sediment removal, although mosquito control is a concern in extended detention basins that are designed to include pools of standing water. The typical maintenance requirements include:

- Harvest vegetation annually, during the summer.
- Trim vegetation at the beginning and end of the wet season and inspect monthly to prevent establishment of woody vegetation and for aesthetic and mosquito control reasons.
- The use of pesticides and quick-release synthetic fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed. Check with the local jurisdiction for any local policies regarding the use of pesticides and fertilizers.
- Conduct a biannual (twice yearly) evaluation of the health of the vegetation and remove and replace any dead or dying plants.
- Conduct semiannual inspection as follows
 - Inspect the outlet, embankments, dikes, berms, and side slopes for structural integrity and signs of erosion.
 - Examine outlets and overflow structures and remove any debris plugging the outlets. Identify and minimize any sources of sediment and debris. Check rocks or other erosion control and replace, if necessary.
 - Check inlets to make sure piping is intact and not plugged. Remove accumulated sediment and debris near the inlet.
 - Inspect for standing water and correct any problems that prevent the extended detention basin from draining as designed.
 - If mosquito larvae are observed, contact the San Mateo County Mosquito Abatement District at 650/344-8592.
 - Check for slope stability and the presence of rodent burrows. Fill in any holes detected in the side slopes.
 - Maintenance activities at the bottom of the basin shall not be performed with heavy equipment, which would compact the soil and limit infiltration.
 - Remove sediment from the forebay when the sediment level reaches the level shown on the fixed vertical sediment marker.
 - Remove accumulated sediment and regrade about every 10 years or when the accumulated sediment volume exceeds 10 percent of the basin volume.
 - Remove accumulated trash and debris from the extended detention basin at the middle and end of the wet season (January and April), or as needed.
 - Inspect for and remove any trash and debris.
 - Confirm that any fences around the facility are secure.
 - Check for sediment accumulation.

Figure 8-6: Extended Detention Basin, Palo Alto
RAINWATER HARVESTING AND USE – COMMON MAINTENANCE CONCERNS:

Routine maintenance:
- Conduct annual inspections of backflow prevention systems.
- If rainwater is provided for indoor use, conduct annual water quality testing.
- Clean gutters and first-flush devices at least annually, and as needed, to prevent clogging.
- Conduct regular inspection and replacement of treatment system components, such as filters and UV lights.
- If the system includes a roof washer, regularly inspect and clean the roof washer to avoid clogging.
- Regularly inspect for and repair leaks.
- Maintenance requirements specific to cisterns:
 - Flush cisterns annually to remove sediment.
 - For buried structures, vacuum removal of sediment is required.
 - Brush the inside surfaces and thoroughly disinfect twice per year.
- Maintenance requirements specific to rain barrels
 - Inspect rain barrels four times per year and after major storms
 - Remove debris from screens as needed.
 - Replace screens, spigots, downspouts, and rain leaders as needed.

Figure 8-7: Rainwater harvesting system, Mills College, Oakland
MEDIA FILTERS – COMMON MAINTENANCE CONCERNS:
Clogging is the primary maintenance concern for media filters, although mosquito control is also an issue. Typical maintenance requirements are as follows:

- During the wet season, inspect periodically for standing water, sediment, trash and debris, and to identify potential problems.
- Remove accumulated trash and debris in the sedimentation basin, from the riser pipe, and the filter bed during routine inspections.
- Inspect the media filter once during the wet season after a large rain event to determine whether the facility is draining completely within five days.
- If the facility drain time exceeds five days, remove the top 50 millimeters (2 inches) of sand and dispose of sediment. Restore media depth to 450 millimeters (18 inches) when overall media depth drops to 300 millimeters (12 inches).

Figure 8-8: Example of a media filter cartridge (Type C, as described in Section 6.4), which is typically used as part of an array. Source: www.stormwaterinc.com. This drawing is shown for general information only; its use is not an endorsement of any proprietary product.
Alternative Compliance

In this Chapter:

- Information on using Alternative Compliance for options on where LID treatment is provided.

9.1 What Is Alternative Compliance?

Provision C.3.e of the Municipal Regional Stormwater Permit (MRP) allows municipalities to grant “alternative compliance” to new development or redevelopment projects in lieu of requiring full onsite treatment of the Provision C.3.d amount of stormwater runoff and pollutant loads with low-impact development (LID) measures. Projects that receive alternative compliance must still provide LID treatment in full, but all of the treatment does not have to take place onsite. There are no special eligibility criteria for using alternative compliance. If your project is required to provide LID treatment, it may use alternative compliance to meet these requirements. There is no requirement to make LID impracticability or infeasibility findings in order to use alternative compliance. The MRP offers two options for using alternative compliance, described in Section 9.2, sets deadlines for constructing offsite alternative compliance projects (Section 9.3), and sets a timeline for the alternative compliance provision to take effect.

9.2 Categories of Alternative Compliance

A project may use either of the alternative compliance options listed below.

9.2.1 Option 1: Partial LID treatment at an off-site location

Projects may treat a portion of the required amount of stormwater runoff using LID on-site or offsite at a joint treatment facility and treat the remaining portion of runoff at an offsite project within the same watershed. Offsite LID treatment measures must provide an equivalent quantity of hydraulically-sized treatment of both stormwater runoff and pollutant loads and achieve a net environmental benefit.

JOINT TREATMENT FACILITY
A joint treatment facility treats runoff from multiple sites at a nearby, offsite location.

OFFSITE EQUIVALENT TREATMENT PROJECT
An offsite equivalent treatment project provides off-site LID treatment for a surface area or volume and pollutant loading of storm water runoff, equivalent to that of the proposed new
development or redevelopment project for which alternative compliance is sought. Examples of acceptable equivalent treatment projects include the installation of hydraulically-sized LID treatment measures in a nearby parking lot, or other development where hydraulically-sized LID treatment measures were not previously installed.

9.2.2 Option 2: Payment of in-lieu fees
Projects may treat a portion of the required amount of stormwater runoff using LID on-site or offsite at a joint treatment facility and **pay equivalent in-lieu fees to treat the remaining amount** of stormwater runoff with LID treatment measures at a Regional Project.

IN-LIEU FEES
In-lieu fees provide the monetary amount necessary to treat an equivalent quantity of stormwater runoff and pollutant loading with hydraulically-sized LID treatment measures at a Regional Project and the monetary amount necessary to share a proportionate amount of the operation and maintenance costs of the Regional Project.

REGIONAL PROJECT
A regional project is a regional or municipal stormwater treatment facility located in the same watershed as the project seeking alternative compliance.

9.3 Offsite or Regional Project completion deadlines

9.3.1 Timeline for construction of offsite project
Construction of the offsite LID treatment project must be completed by the time the subject project is completed. If the offsite project is not completed in time, the offsite project must, for each additional year up to three years, provide additional treatment of 10% of the required amount of stormwater runoff and pollutant loads. For example, an offsite project completed two years after the subject project would be required to provide LID treatment for 20% more stormwater runoff and pollutant loads than if the offsite project had been completed in time.

9.3.2 Timeline for construction of a Regional Project
The regional project must be completed within three years of the subject project. This can be extended to five years only with Regional Water Board approval. In order for the Water Board to grant the extension to five years, the applicant must have demonstrated good-faith efforts to implement the regional project by applying for the necessary permits and having the necessary funds encumbered for project completion.

9.4 Alternative Compliance Effective Date
The Alternative Compliance provision and the LID treatment requirements both go into effect December 1, 2011. Projects deemed complete after this date may use alternative compliance to meet the LID treatment requirements for LID treatment. Projects deemed complete before December 1, 2011 do not have to use LID for stormwater treatment if the project has been diligently pursued\(^1\) by the project applicant. The Alternative Compliance provision does not apply to public projects for which funding has been committed and construction is scheduled to begin by December 1, 2012.

\(^1\) Diligent pursuance may be demonstrated by the project applicant’s submittal of supplemental information to the original application, plans, or other documents required for any necessary approvals of the project.
References

Northeast Georgia Regional Development Center (NGRDC) and Georgia Department of Natural Resources (GDNR). 2005/06. Aquatics Study Materials.

Wolfe, Bruce H., Executive Officer of the San Francisco Bay Regional Water Quality Control Board.
Appendix A

Plant List and Planting Guidance for Landscape-Based Biotreatment Measures

Table of Contents
A.1 Introduction 1
A.2 General Recommendations 2
A.3 Plants for Stormwater Measures 2
A.4 Planting Specifications 22
A.5 Monitoring and Maintenance 25
A.6 Bay-Friendly Landscaping and Integrated Pest Management 26
A.7 Planting Tips for Single-Family Homes 30
A.8 Nursery Sources for Native Plants 30
References 32

A.1 Introduction

The purpose of this appendix is to provide guidance on the planting techniques and selection of appropriate plant materials for the stormwater measures described in this handbook.

The plant lists described in this appendix are not prescriptive, but should serve as a guide. In selecting plant materials, it is important to consider factors that influence plant establishment and success, such as microclimate, type of soil, water availability, proximity to saltwater and exposure to sun. Numerous resources are available to assist in selecting appropriate plant species in San Mateo County, including Sunset's *Western Garden Book* and the East Bay Municipal Utility District's *Plants and Landscapes for Summer-Dry Climates of the San Francisco Bay Region.*
In addition, the function of the individual stormwater measure should be carefully considered when selecting plant materials. Factors to be considered include inundation period, expected flow of water, and access and maintenance requirements.

A.2 General Recommendations

- **Avoid the use of invasive species.** In selecting plants for stormwater measures, the use of invasive species should be avoided. A complete list of invasive plants can be found at www.cal-ipc.org, the California Invasive Plant Council's Invasive Plant Inventory.

- **Minimize or eliminate the use of irrigated turf.** Effort should be made to minimize the use of irrigated turf, which has higher maintenance requirements and greater potential for polluted runoff.

A.3 Plants for Stormwater Measures

Plants play an important role in the function of landscape-based stormwater treatment measures:

- **Infiltration and evapotranspiration.** Plants aid in the reduction of stormwater runoff by both increasing infiltration, and by returning water to the atmosphere through evapotranspiration.

- **Sedimentation.** Some stormwater treatment measures, such as vegetated swales and vegetated buffer strips, are designed to remove coarse solids through sedimentation that is aided by dense, low-growing vegetation.

- **Pollutant trapping.** Vegetation helps to prevent the resuspension of pollutants associated with sediment particles. It is essential that pollutants removed during small storms are not remobilized during large storms.

- **Phytoremediation.** Plants for stormwater treatment measures are important for their role in phytoremediation, the uptake of nutrients and the ability to neutralize pollutants.

- **Soil stabilization.** As in any landscaped area, established plantings help control soil erosion. This is important both to keep sediment out of stormwater and to retain the surface soils, which help to remove pollutants from infiltrated runoff.

- **Aesthetic benefits.** Plants within or adjacent to stormwater facilities provide an aesthetic benefit.

Plants suitable for use in stormwater treatment measures are organized according to the following categories:
Emergent refers to those species that occur on saturated soils or on soils covered with water for most of the growing season. The foliage of emergent aquatics is partly or entirely borne above the water surface.

Grasses refer to those species that are monocotyledonous plants with slender-leaved herbage found in the Family Poaceae.

Herbaceous refers to those species with soft upper growth rather than woody growth. Some species will die back to the roots at the end of the growing season and grow again at the start of the next season. Annuals, biennials and perennials may be herbaceous.

Shrub is a horticultural distinction that refers to those species of woody plants which are distinguished from trees by their multiple stems and lower height. A large number of plants can be either shrubs or trees, depending on the growing conditions they experience.

Tree refers to those species of woody plants with one main trunk and a rather distinct and elevated head.

Plants suitable for use in stormwater treatment measures are listed in two ways. First, a comprehensive list of all recommended plant species is provided in Table A-1, which lists the plants in alphabetical order by Latin name, in the categories described above. The columns in Table A-1 indicate stormwater treatment measures for which each plant species may be suitable. Following Table A-1 are brief descriptions of the stormwater measures for which technical guidance is included in this handbook, including the suitable plantings from Table A-1.
Table A-1 Plant List for Stormwater Measures

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Description</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisia douglasiana</td>
<td>mugwort</td>
<td>✓</td>
</tr>
<tr>
<td>Carex barbarae</td>
<td>Santa Barbara sedge</td>
<td>✓</td>
</tr>
<tr>
<td>Carex densa</td>
<td>dense sedge</td>
<td>✓</td>
</tr>
<tr>
<td>Carex obruca</td>
<td>slough sedge</td>
<td>✓</td>
</tr>
<tr>
<td>Eleocharis macrostachya</td>
<td>creeping spikerush</td>
<td>✓</td>
</tr>
<tr>
<td>Hydrocotyle ranunculoides</td>
<td>marsh pennywort</td>
<td>✓</td>
</tr>
<tr>
<td>Juncus Baillicus</td>
<td>baltic rush</td>
<td>✓</td>
</tr>
<tr>
<td>Juncus Bufenius</td>
<td>toad rush</td>
<td>✓</td>
</tr>
<tr>
<td>Juncus effusus</td>
<td>Pacific rush</td>
<td>✓</td>
</tr>
<tr>
<td>Juncus leseuri</td>
<td>common rush</td>
<td>✓</td>
</tr>
<tr>
<td>Juncus mexicanus</td>
<td>Mexican rush</td>
<td>✓</td>
</tr>
<tr>
<td>Juncus patens</td>
<td>blue rush</td>
<td>✓</td>
</tr>
<tr>
<td>Juncus xiphoides</td>
<td>irises-leaved rush</td>
<td>✓</td>
</tr>
<tr>
<td>Limonium californicum</td>
<td>marsh rosemary</td>
<td>✓</td>
</tr>
<tr>
<td>Phragmites spp.</td>
<td>common reeds</td>
<td>✓</td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td>Tule</td>
<td>✓</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td>three square</td>
<td>✓</td>
</tr>
<tr>
<td>Scirpus californicus</td>
<td>california bulrush</td>
<td>✓</td>
</tr>
<tr>
<td>Spartina foliosa</td>
<td>California cordgrass</td>
<td>✓</td>
</tr>
<tr>
<td>Typha angustifolia</td>
<td>narrowleaf cattail</td>
<td>✓</td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>cattail</td>
<td>✓</td>
</tr>
</tbody>
</table>

Emergent Species

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Description</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrostis exarata</td>
<td>spike bentgrass</td>
<td>✓</td>
</tr>
<tr>
<td>Alopecurus aequalis</td>
<td>shortawn foxtail</td>
<td>✓</td>
</tr>
<tr>
<td>Alopecurus saccatus</td>
<td>Pacific foxtail</td>
<td>✓</td>
</tr>
<tr>
<td>Aristida purpurea</td>
<td>Purple three-awn</td>
<td>✓</td>
</tr>
<tr>
<td>Calamagrostis X acutiflora</td>
<td>Reed grass</td>
<td>✓</td>
</tr>
<tr>
<td>Carex pansa</td>
<td>California meadow sedge</td>
<td>✓</td>
</tr>
<tr>
<td>Carex praegracilus</td>
<td>clustered field sedge</td>
<td>✓</td>
</tr>
<tr>
<td>Carex tumulicola</td>
<td>Berkeley sedge</td>
<td>✓</td>
</tr>
<tr>
<td>Chondropetalum tectorum</td>
<td>cape rush</td>
<td>✓</td>
</tr>
<tr>
<td>Danthonia californica</td>
<td>California oatgrass</td>
<td>✓</td>
</tr>
<tr>
<td>Deschampsia cespitosa</td>
<td>tufted hairgrass</td>
<td>✓</td>
</tr>
<tr>
<td>Deschampsia cespitosa ssp. holciformis</td>
<td>Pacific hairgrass</td>
<td>✓</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>salt grass</td>
<td>✓</td>
</tr>
<tr>
<td>Eleocharis palustris</td>
<td>creeping spikerush</td>
<td>✓</td>
</tr>
<tr>
<td>Elymus glaucus</td>
<td>blue wild rye</td>
<td>✓</td>
</tr>
<tr>
<td>Festuca californica</td>
<td>California fescue</td>
<td>✓</td>
</tr>
<tr>
<td>Festuca idahoensis</td>
<td>Idaho fescue</td>
<td>✓</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>red fescue</td>
<td>✓</td>
</tr>
<tr>
<td>Festuca rubra ‘molate’</td>
<td>Molate fescue</td>
<td>✓</td>
</tr>
<tr>
<td>Leymus triticoides</td>
<td>creeping wildrye</td>
<td>✓</td>
</tr>
<tr>
<td>Linum usitatissimum</td>
<td>flax</td>
<td>✓</td>
</tr>
<tr>
<td>Melica californica</td>
<td>California melic</td>
<td>✓</td>
</tr>
<tr>
<td>Melica imperfecta</td>
<td>coast range melic</td>
<td>✓</td>
</tr>
<tr>
<td>Muhlenbergia rigens</td>
<td>deergrass</td>
<td>✓</td>
</tr>
<tr>
<td>Nassella pulchra</td>
<td>purple needlegrass</td>
<td>✓</td>
</tr>
<tr>
<td>Nassella lepida</td>
<td>foothill needlegrass</td>
<td>✓</td>
</tr>
<tr>
<td>Sisyrinchium bellum</td>
<td>blue-eyed grass</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Denotes riparian species with limited drought tolerance

¹ Denotes species with phytoremediation capabilities

² Non-tree species to be used only with adequate planting surface and when infiltration rates are 5-10 inches/hour
Table A-1 Plant List for Stormwater Measures

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium ¹</td>
<td></td>
</tr>
<tr>
<td>Allium spp.</td>
<td></td>
</tr>
<tr>
<td>Anemone nemorosa (Chamaemelum nobile)</td>
<td>chamomile</td>
<td></td>
</tr>
<tr>
<td>Armeria maritima</td>
<td>sea pink</td>
<td></td>
</tr>
<tr>
<td>Clarkia spp.</td>
<td></td>
</tr>
<tr>
<td>Epilobium densiflorum</td>
<td>dense spike-primrose</td>
<td></td>
</tr>
<tr>
<td>Erigonum latifolium</td>
<td>coast buckwheat</td>
<td></td>
</tr>
<tr>
<td>Eschscholzia californica</td>
<td>California poppy</td>
<td></td>
</tr>
<tr>
<td>Layia platyglossa</td>
<td>tidy tips</td>
<td></td>
</tr>
<tr>
<td>Limonium californicum</td>
<td>marsh rosemary</td>
<td></td>
</tr>
<tr>
<td>Linanthus spp.</td>
<td>Linanthus</td>
<td></td>
</tr>
<tr>
<td>Lotus scoparius</td>
<td>deerweed</td>
<td></td>
</tr>
<tr>
<td>Mimulus aurantiacus</td>
<td>common monkeyflower</td>
<td></td>
</tr>
<tr>
<td>Mimulus cardinalis</td>
<td>scarlet monkeyflower</td>
<td></td>
</tr>
<tr>
<td>Monardella spp.</td>
<td>coyote mint</td>
<td></td>
</tr>
<tr>
<td>Nepeta spp.</td>
<td>catmint</td>
<td></td>
</tr>
<tr>
<td>Penstemon spp.</td>
<td>bearded tongue</td>
<td></td>
</tr>
<tr>
<td>Sedum spp.</td>
<td>stonecrop</td>
<td></td>
</tr>
<tr>
<td>Sempervivum spp.</td>
<td>hen and chicks</td>
<td></td>
</tr>
<tr>
<td>Solidago spp.</td>
<td>goldenrods</td>
<td></td>
</tr>
<tr>
<td>Thymus pseudolanuginosus</td>
<td>woolly thyme</td>
<td></td>
</tr>
<tr>
<td>Vigna unguiculata ¹</td>
<td>cowpea</td>
<td></td>
</tr>
</tbody>
</table>
| ² Non-tree species to be used only with adequate planting surface and when infiltration rates are 5-10 inches/hour

Notes
- ¹ Denotes riparian species with limited drought tolerance
- ² Denotes species with phytoremediation capabilities
- ³ Non-tree species to be used only with adequate planting surface and when infiltration rates are 5-10 inches/hour
Table A-1 Plant List for Stormwater Measures

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrica californica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physocarpus capitatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittosporum tobira</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus ilicifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus Californica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhus integrifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribes aureum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribes malvaceum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribes sanguineum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosa californica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus parviflorus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus spectabilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus ursinus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvia bracteigii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvia leucophylla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvia melifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvia sonomensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sambucus mexicana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santolina spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphoricarpus albus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stachys spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styax officinalis redivivus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichostema spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zauschneria californica (Epilobium c.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer circinatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer macrophyllum*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer negundo* v. Californicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesculus californica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus rhombifolia *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus rubra*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbutus menziesii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula nigra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calocedrus decurrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celtis occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cercidium floridum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cercis occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilopsis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chionanthus retusus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corylus cornuta v. Californica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crataegus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus latifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geijera parviflora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagerstroemia spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycianthus floribundus asplendifolius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morus alba (fruitless var.)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platanus acerifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platanus racemosa*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Denotes riparian species with limited drought tolerance
¹ Denotes species with phytoremediation capabilities
² Non-tree species to be used only with adequate planting surface and when infiltration rates are 5-10 inches/hour
Table A-1 Plant List for Stormwater Measures

<table>
<thead>
<tr>
<th>Tree Species cont'd</th>
<th>Fremont's cottonwood</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Populus fremontii¹</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Prunus spp.</td>
<td>plum</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus agrifolia</td>
<td>California live oak</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus kellogii</td>
<td>California Black Oak</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus lobata</td>
<td>valley oak</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus palustris</td>
<td>pin oak</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus virginiana</td>
<td>southern live oak</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Salix laevigata¹</td>
<td>red willow</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Salix lasiolepis¹</td>
<td>arroyo willow</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Salix lucida ssp. lasiandra¹</td>
<td>shining willow</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sequoia sempervirens</td>
<td>coast redwood</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Umbellularia californica</td>
<td>California bay</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

¹ Denotes riparian species with limited drought tolerance
² Denotes species with phytoremediation capabilities
³ Non-tree species to be used only with adequate planting surface and when infiltration rates are 5-10 inches/hour
A brief paragraph describing each stormwater measure is provided below, including the key factors that should influence planting techniques and plant selection, and a list of suitable plantings from Table A-1. The suitable plantings are reiterated in this manner for the landscape designer's convenience in preparing landscape plans for each type of stormwater measure.

Bioretention Area – Including Bioretention Swale
Bioretention areas are intended to act as filters with plants. Plants in bioretention areas help with phytoremediation and infiltration. Therefore, nutrient uptake and the ability to neutralize pollutants are priorities for species selection. Plants for these areas should be able to withstand periods of inundation as well as extended periods of drought. Emergent, grass and herbaceous species can be planted in the bioretention area, while shrub and tree species should be concentrated on the outer edges. Grasses can also be planted along the exterior to slow the velocity of flow and allow the sedimentation of coarse solids, which helps minimize clogging of the bioretention area. Supplemental irrigation will be necessary to maintain emergent species during extremely dry conditions.

EMERGENT/GRASS SPECIES
- *Juncus patens*\(^2\) blue rush
- *Aristida purpurea*\(^2\) Purple three-awn
- *Chondropetalum tectorum* Cape rush
- *Deschampsia cespitosa*\(^1,2\) tufted hairgrass
- *Deschampsia cespitosa ssp. Holciformis*\(^2\) Pacific hairgrass
- *Elymus glaucus*\(^2\) blue wild rye
- *Festuca californica*\(^2\) California fescue
- *Leymus triticoides*\(^2\) creeping wildrye
- *Linum usitatissimum*\(^1\) flax
- *Melica imperfecta*\(^2\) Coast range melic
- *Muhlenbergia rigens*\(^2\) deergrass
- *Nasella pulchra*\(^2\) purple needlegrass

HERBACEOUS SPECIES
- *Alliums spp.* wild onion
- *Clarkia spp.*\(^2\) Clarkia
- *Epilobium densiflorum*\(^2\) dense spike-primrose
- *Eschscholzia californica*\(^2\) California poppy
- *Limonium californicum*\(^2\) Marsh rosemary
- *Linanthus spp.*\(^2\) Linanthus
- *Lotus scoparius*\(^2\) deerweed
- *Mimulus aurantiacus*\(^2\) common monkeyflower
- *Mimulus cardinalis*\(^2\) scarlet monkeyflower
- *Monardella spp.*\(^2\) coyote mint
- *Nepeta spp.*\(^*\) catmint
- *Penstemon spp.*\(^2\) bearded tongue
- *Thymus pseudolanuginosus* woolly thyme
SHRUB SPECIES

Shrubs and trees are recommended to be planted at a rate of 2,500 shrubs and trees per hectare (1,000 per acre). The shrub-to-tree ratio should be 2:1 to 3:1 (California Stormwater Quality Association, 2003).

Arctostaphylos densiflora manzanita 'McMinn'
 *McMinn*²
Arctostaphylos uva-ursi manzanita 'Emerald Carpet'
 'Emerald Carpet'²
Baccharis pilularis coyote brush prostrate
 'Twin Peaks'²
Buddleia spp.* Butterfly bush
Calycanthus occidentalis² Spicebush
Carpenteria californica² Bush anemone
Ceanothus hearstiorum² ceanothus
Ceanothus spp.*² ceanothus
Cornus sericea² western dogwood
 (same as C. stolonifera)
Heteromeles arbutifolia² toyon
Holodiscus sp.*² oceanspray
Mahonia aquifolium² Oregon grape
Mahonia repens² creeping Oregon grape
Physocarpus capitatus² Pacific ninebark
Rhamnus californica² coffeeberry
Ribes aureum² Golden currant
Rosa californica² California wild rose
Rubus parviflorus² thimbleberry
Rubus spectabilis² salmonberry
Rubus ursinus² California blackberry
Salvia brandegee² black sage
Salvia clevelandii² Cleveland sage
Salvia leucophylla² purple sage
Salvia melifera² black sage
Salvia sonomensis² creeping sages
Sambucus mexicana² elderberry
Santolina spp. *² santolina
Stachys spp.* lambs ear
Styrax officinalis redivivus² California snowdrop
Trichostema spp. *² wooly blue curls

TREE SPECIES

Acer circinatum² vine maple
Acer macrophyllum², ³ big leaf maple
Acer negundo box elder
 v. Californicum², ³
Alnus rhombifolia², ³ white alder
Alnus rubra², ³ red alder
Betula nigra river birch
Chilopsis sp. desert willow
Corylus cornuta California hazelnut
 v. Californica²
Fraxinus latifolia² Oregon ash
Platanus racemosa²,³ sycamore
Populus fremontii¹,²,³ Fremont’s cottonwood
Quercus lobata² valley oak
Salix laevigata¹,² red willow
Salix lasiolepis¹,² arroyo willow
Salix lucida ssp. lasiandra¹,² shining willow

¹ denotes species with phytoremediation capabilities
² Denotes native species
³ Denotes species with limited drought tolerance
* Denotes drought tolerant species

Flow-Through Planter
Plant species for flow-through planters will depend on the size of the planter. Shrubs and trees should be planted in planters only when there is sufficient space. Recommended minimum soil depth for shrubs is 18”. Trees are generally not included in flow-through planters, but if they are used, minimum soil depth must be 36”. Plant species should be adapted to well-drained soils. Irrigation is typically required, but selecting plants adapted to extended dry periods can reduce irrigation requirements.

EMERGENT
Hydrocotyle ranunculoides² Marsh pennywort
Juncus patens² blue rush

GRASS SPECIES
Aristida purpurea² Purple three-awn
Carex praegracilis* Clustered field sedge
Carex tumulicola² Berkeley sedge
Chondropetalum tectorum* cape rush
Festuca californica² California fescue
Festuca idahoensis² Idaho fescue
Festuca rubra¹,² red fescue
Festuca rubra ‘molate’² Molate fescue
Linum usitatissimum¹ flax
Melica imperfecta² coast range melic
Muhlenbergia rigens² deergrass
Sisyrinchium bellum² blue-eyed grass

HERBACEOUS SPECIES
Achillea millefolium¹,² common yarrow
Allium spp. wild onion
Armeria maritima² sea pink
Epilobium densiflorum² dense spike-primrose
Eschscholzia californica² California poppy
Limonium californicum² Marsh rosemary
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mimulus aurantiacus*2</td>
<td>common monkeyflower</td>
</tr>
<tr>
<td>Mimulus cardinalis*2</td>
<td>scarlet monkeyflower</td>
</tr>
<tr>
<td>Solidago spp.*1</td>
<td>goldenrod</td>
</tr>
<tr>
<td>Thymus pseudolanuginosus</td>
<td>woolly thyme</td>
</tr>
<tr>
<td>Vigna unguiculata*1</td>
<td>cowpea</td>
</tr>
</tbody>
</table>

SHRUB SPECIES

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctostaphylos densiflora*2</td>
<td>manzanita 'McMinn'</td>
</tr>
<tr>
<td>Arctostaphylos manzanita*2</td>
<td>common manzanita</td>
</tr>
<tr>
<td>Arctostaphylos uva-ursi*2</td>
<td>manzanita 'Emerald Carpet'</td>
</tr>
<tr>
<td>Baccharis pilularis*2</td>
<td>coyote brush prostrate</td>
</tr>
<tr>
<td>Berberis thunbergii*</td>
<td>Japanese barberry</td>
</tr>
<tr>
<td>Calycanthus occidentalis*2</td>
<td>Spicebush</td>
</tr>
<tr>
<td>Carpenteria californica*2</td>
<td>Bush anemone</td>
</tr>
<tr>
<td>Cornus sericea*2</td>
<td>western dogwood</td>
</tr>
<tr>
<td>Dietes spp.*</td>
<td>Fortnight lily</td>
</tr>
<tr>
<td>Garrya elliptica*2</td>
<td>coast silk tassle</td>
</tr>
<tr>
<td>Echium canalicans*</td>
<td>Pride-of-Madera</td>
</tr>
<tr>
<td>Heteromeles arbutifolia*2</td>
<td>toyon</td>
</tr>
<tr>
<td>Lavandula spp.*</td>
<td>lavender</td>
</tr>
<tr>
<td>Mahonia aquifolium*2</td>
<td>Oregon grape</td>
</tr>
<tr>
<td>Mahonia repens*2</td>
<td>creeping Oregon grape</td>
</tr>
<tr>
<td>Pittosporum tobira*</td>
<td>mock orange</td>
</tr>
<tr>
<td>Rhamnus Californica*2</td>
<td>coffeeberry</td>
</tr>
<tr>
<td>Ribes aureum*2</td>
<td>Golden currant</td>
</tr>
<tr>
<td>Rosa californica*2</td>
<td>California wild rose</td>
</tr>
<tr>
<td>Rubus parviflorus*2</td>
<td>Thimbleberry</td>
</tr>
<tr>
<td>Rubus spectabilis*2</td>
<td>Salmonberry</td>
</tr>
<tr>
<td>Sambucus mexicana*2</td>
<td>elderberry</td>
</tr>
<tr>
<td>Symphoricarpos albus*2</td>
<td>snowberry</td>
</tr>
</tbody>
</table>

TREE SPECIES

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxinus latifolia*</td>
<td>Oregon ash</td>
</tr>
</tbody>
</table>

1 denotes species with phytoremediation capabilities
2 Denotes native species
* Denotes drought tolerant species
3 Denotes species with limited drought tolerance

Tree Well Filter

Trees and shrubs planted in tree well filters should be an appropriate size for the space provided. Because plant roots are confined to the container, it is recommended that small trees and shrubs with shallow, fibrous roots be planted in the tree well filter. Provided that site
conditions allow, it may be possible to work with the manufacturer to design a container that would allow for the planting of larger trees or shrubs. Plants for tree well filters should be tolerant of frequent, but temporary periods of inundation as well as adapted to extremely well-drained soils. Species with the ability to neutralize contaminants are preferred. Proprietary designs typically would not include grass or herbaceous species; however, non-proprietary designs may allow for grass and/or herbaceous species when there is adequate planting surface. Grass and herbaceous species identified below are identified for tree well filters in which the infiltration rate is 5 to 10 inches per hour.

GRASS/HERBACEOUS SPECIES (NOTE: These species are to be used only with adequate planting surface and when infiltration rates are 5 to 10 inches per hour.)

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex pansa*2</td>
<td>California meadow sedge</td>
</tr>
<tr>
<td>Festuca californica*2</td>
<td>California fescue</td>
</tr>
<tr>
<td>Festuca idahoensis*2</td>
<td>Idaho fescue</td>
</tr>
<tr>
<td>Festuca rubra*1,2</td>
<td>red fescue</td>
</tr>
<tr>
<td>Festuca rubra ‘molate’*2</td>
<td>Molate fescue</td>
</tr>
<tr>
<td>Achillea millefolium*1,2</td>
<td>common yarrow</td>
</tr>
<tr>
<td>Anthemis nobilis*</td>
<td>chamomile</td>
</tr>
<tr>
<td>Armeria maritime*2</td>
<td>sea pink</td>
</tr>
<tr>
<td>Erigonum latifolium*2</td>
<td>coast buckwheat</td>
</tr>
<tr>
<td>Erigonum fasciculatum*2</td>
<td>flattop buckwheat</td>
</tr>
<tr>
<td>Mimulus cardinalis*2</td>
<td>scarlet monkeyflower</td>
</tr>
<tr>
<td>Nepeta spp.*</td>
<td>catmint</td>
</tr>
<tr>
<td>Penstemon spp.*</td>
<td>bearded tongue</td>
</tr>
<tr>
<td>Thymus pseudolanuginosus*2</td>
<td>woolly thyme</td>
</tr>
</tbody>
</table>

SHRUB SPECIES

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baccharis pilularis*1,2</td>
<td>coyote brush prostrate</td>
</tr>
<tr>
<td>‘Twin Peaks’*2</td>
<td></td>
</tr>
<tr>
<td>Cornus sericea*2 (same as C. stolonifera)</td>
<td>western dogwood</td>
</tr>
<tr>
<td>Physocarpus capitatus*2</td>
<td>Pacific ninebark</td>
</tr>
<tr>
<td>Prunus ilicifolia*2</td>
<td>hollyleaf cherry</td>
</tr>
</tbody>
</table>

TREE SPECIES

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer circinatum*2</td>
<td>vine maple</td>
</tr>
<tr>
<td>Acer negundo v. Californicum*2,3</td>
<td>box elder</td>
</tr>
<tr>
<td>Alnus rhombifolia*2,3</td>
<td>white alder</td>
</tr>
<tr>
<td>Alnus rubra*2,3</td>
<td>red alder</td>
</tr>
<tr>
<td>Betula nigra</td>
<td>river birch</td>
</tr>
<tr>
<td>Corylus cornuta v. Californica*2</td>
<td>California hazelnut</td>
</tr>
<tr>
<td>Crataegus*</td>
<td>Hawthorn</td>
</tr>
<tr>
<td>Fraxinus latifolia*2</td>
<td>Oregon ash</td>
</tr>
<tr>
<td>Platanus acerifolia*</td>
<td>London Plane Tree</td>
</tr>
<tr>
<td>Platanus racemosa*2</td>
<td>sycamore</td>
</tr>
</tbody>
</table>
Vegetated Buffer Strips

Vegetated buffer strips should be designed to function and appear as natural vegetated areas adjacent to development. They treat surface runoff from adjacent impervious areas so a variety of trees, shrubs, and grass and herbaceous species should be included in order to maximize water and nutrient uptake, as well as to retain sediment.

EMERGENT SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex barbarae</td>
<td>Santa Barbara sedge</td>
</tr>
<tr>
<td>Juncus patens</td>
<td>blue rush</td>
</tr>
</tbody>
</table>

GRASS SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristida purpurea</td>
<td>purple three-awn</td>
</tr>
<tr>
<td>Carex pansa</td>
<td>California meadow sedge</td>
</tr>
<tr>
<td>Carex tumulicola</td>
<td>Berkeley sedge</td>
</tr>
<tr>
<td>Chondropetalum tectorum</td>
<td>Cape rush</td>
</tr>
<tr>
<td>Deschampsia cespitosa</td>
<td>tufted hairgrass</td>
</tr>
<tr>
<td>Deschampsia cespitosa ssp. holciformis</td>
<td>Pacific hairgrass</td>
</tr>
<tr>
<td>Elymus glaucus</td>
<td>blue wild rye</td>
</tr>
<tr>
<td>Festuca californica</td>
<td>California fescue</td>
</tr>
<tr>
<td>Festuca idahoensis</td>
<td>Idaho fescue</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>red fescue</td>
</tr>
<tr>
<td>Festuca rubra 'Molate'</td>
<td>Molate fescue</td>
</tr>
<tr>
<td>Leymus triticoides</td>
<td>creeping wildrye</td>
</tr>
<tr>
<td>Melica californica</td>
<td>California melic</td>
</tr>
<tr>
<td>Melica imperfecta</td>
<td>coast range melic</td>
</tr>
<tr>
<td>Muhlenbergia rigens</td>
<td>deergrass</td>
</tr>
<tr>
<td>Nasella pulchra</td>
<td>purple needlegrass</td>
</tr>
<tr>
<td>Nassella lepida</td>
<td>Foothill needlegrass</td>
</tr>
<tr>
<td>Sisyrinchium bellum</td>
<td>blue-eyed grass</td>
</tr>
</tbody>
</table>

HERBACEOUS SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium</td>
<td>common yarrow</td>
</tr>
<tr>
<td>Alliums pp.</td>
<td>wild onion</td>
</tr>
<tr>
<td>Armeria maritima</td>
<td>sea pink</td>
</tr>
<tr>
<td>Clarkia spp.</td>
<td>Clarkia</td>
</tr>
<tr>
<td>Epilobium canum</td>
<td>California fuchsia</td>
</tr>
<tr>
<td>(Zauschneria)</td>
<td></td>
</tr>
<tr>
<td>Epilobium densiflorum</td>
<td>dense spike-primrose</td>
</tr>
<tr>
<td>Eriogonum latifolium</td>
<td>Coast buckwheat</td>
</tr>
</tbody>
</table>

1 Denotes species with phytoremediation capabilities
2 Denotes native species
* Denotes drought tolerant species
3 Denotes species with limited drought tolerance
Eriogonum fasciculatum*2 flattop buckwheat
Eschscholzia californica*2 California poppy
Layia platyglossa*2 tidy tips
Limonium californicum*2 Marsh rosemary
Linanthus spp. *2 Linanthus
Lotus scoparius*2 deerweed
Mimulus aurantiacus*2 common monkeyflower
Mimulus cardinalis*2 scarlet monkeyflower
Monardella spp. *2 coyote mint
Nepeta spp.* catmint
Penstemon*2 bearded tongue
Sedum spp.* stonecrop
Sempervivum spp.* hen and chicks
Solidago spp.1 goldenrod
Thymus pseudolanuginosus woolly thyme
Vigna unguiculata1 cowpea

SHRUB SPECIES
Adenostema fasciculatum*2 chamise
Arctostaphylos densiflora*2 manzanita ‘McMinn’
 ‘McMinn’
Arctostaphylos manzanita*2 common manzanita
Arctostaphylos uva-ursi*2 manzanita ‘Emerald Carpet’
 ‘Emerald Carpet’
Baccharis pilularis*2 coyote brush prostrate
 ‘Twin Peaks’
Baccharis salicifolia*2 mulefat
Berberis thunbergii Japanese barberry
Buddleia spp.* butterfly bush
Calycanthus occidentalis*2 Spicebush
Carpenteria californica*2 Bush anemone
Ceanothus heartiorum*2 ceanothus
Ceanothus spp.* ceanothus
Cercocarpus betuloides*2 mountain mahogany
Cistus spp.* rockrose
Comus sericea*2 western dogwood
 (same as C. stolonifera)
Dietes spp. Fortnight lily
Garrya elliptica*2 coast silk tassel
Echium candicans* Pride-of-Madera
Heteromeles arbutiflora*2 toyon
Holodiscus sp.*2 oceanspray
Lavandula spp.* lavender
Lavatera spp. tree mallow
Lepechinia calycina*2 pitcher sage
Lupinus albifrons*2 bush lupine
Mahonia aquifolium*2 Oregon grape
Mahonia repens*2 creeping Oregon grape
<table>
<thead>
<tr>
<th>Myrica californica*2</th>
<th>Pacific wax myrtle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physocarpus capitatus²</td>
<td>Pacific ninebark</td>
</tr>
<tr>
<td>Pittosporum tobira*</td>
<td>mock orange</td>
</tr>
<tr>
<td>Prunus ilicifolia*²</td>
<td>hollyleaf cherry</td>
</tr>
<tr>
<td>Rhamnus Californica*²</td>
<td>coffeeberry</td>
</tr>
<tr>
<td>Rhus integrifolia*²</td>
<td>lemonade berry</td>
</tr>
<tr>
<td>Ribes aureum*²</td>
<td>Golden currant</td>
</tr>
<tr>
<td>Ribes malvaceum*²</td>
<td>chaparral currant</td>
</tr>
<tr>
<td>Ribes sanguineum*²</td>
<td>red-flowering currant</td>
</tr>
<tr>
<td>Rosa californica²</td>
<td>California wild rose</td>
</tr>
<tr>
<td>Rubus parviflorus²</td>
<td>Thimbleberry</td>
</tr>
<tr>
<td>Rubus spectabilis²</td>
<td>Salmonberry</td>
</tr>
<tr>
<td>Rubus ursinus²</td>
<td>California blackberry</td>
</tr>
<tr>
<td>Salvia brandegii*²</td>
<td>black sage</td>
</tr>
<tr>
<td>Salvia clevelandii*²</td>
<td>Cleveland sage</td>
</tr>
<tr>
<td>Salvia leucophylla*²</td>
<td>purple sage</td>
</tr>
<tr>
<td>Salvia melifera*²</td>
<td>black sage</td>
</tr>
<tr>
<td>Salvia sonomensis*²</td>
<td>creeping sage</td>
</tr>
<tr>
<td>Sambucus mexicana*²</td>
<td>elderberry</td>
</tr>
<tr>
<td>Santolina spp. *²</td>
<td>santolina</td>
</tr>
<tr>
<td>Symphoricarpos albus*²</td>
<td>snowberry</td>
</tr>
<tr>
<td>Stachys spp.*</td>
<td>lambs ear</td>
</tr>
<tr>
<td>Styrax officinalis redivivus*²</td>
<td>California snowdrop</td>
</tr>
<tr>
<td>Trichostema spp. *²</td>
<td>wooly blue curls</td>
</tr>
<tr>
<td>Zauschneria californica*²</td>
<td>California fuchsia</td>
</tr>
</tbody>
</table>

TREE SPECIES

<table>
<thead>
<tr>
<th>Acer circinatum²</th>
<th>Vine Maple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer macrophyllum²,³</td>
<td>big leaf maple</td>
</tr>
<tr>
<td>Acer negundo*²,³</td>
<td>box elder</td>
</tr>
<tr>
<td>v. Californicum</td>
<td></td>
</tr>
<tr>
<td>Aesculus californica*²</td>
<td>buckeye</td>
</tr>
<tr>
<td>Alnus rhombifolia²,³</td>
<td>white alder</td>
</tr>
<tr>
<td>Alnus rubra²,³</td>
<td>red alder</td>
</tr>
<tr>
<td>Arbutus menziesii*²</td>
<td>madrone</td>
</tr>
<tr>
<td>Arbutus unedo*</td>
<td>strawberry tree</td>
</tr>
<tr>
<td>Betula nigra</td>
<td>river birch</td>
</tr>
<tr>
<td>Calocedrus decurrens*²</td>
<td>incense cedar</td>
</tr>
<tr>
<td>Celtis occidentales*</td>
<td>common hackberry</td>
</tr>
<tr>
<td>Cercidium floridum*²</td>
<td>blue palo verde</td>
</tr>
<tr>
<td>Cercis occidentalis*²</td>
<td>redbud</td>
</tr>
<tr>
<td>Chilopsis sp.</td>
<td>Desert willow</td>
</tr>
<tr>
<td>Chioanthus retusus</td>
<td>Chinese fringe tree</td>
</tr>
<tr>
<td>Corylus comuta*²</td>
<td>California hazelnut</td>
</tr>
<tr>
<td>v. Californica</td>
<td></td>
</tr>
<tr>
<td>Fraxinus latifolia²</td>
<td>Oregon ash</td>
</tr>
<tr>
<td>Geijera parviflora</td>
<td>Australian willow</td>
</tr>
</tbody>
</table>
Infiltration Trench
An infiltration trench is an aggregate filled trench that receives and stores stormwater runoff in the void spaces between the aggregate and allows it to infiltrate into the surrounding soil. Vegetated filter strips of grass species on either side of the trench can slow and pre-treat the runoff while the trench can physically remove fine sediment and other suspended solids.

EMERGENT SPECIES
- Eleocharis macrostachya² creeping spikerush
- Juncus patens*² blue rush

GRASS SPECIES
- Chondropetalum tectorum Cape rush
- Deschampsia cespitosa¹,² tufted hairgrass
- Deschampsia cespitosa ssp. Holciformis*² Pacific hairgrass
- Leymus triticoides*² creeping wildrye
- Muhlenbergia rigens*² deergrass
- Nasella pulchra*² purple needlegrass
- Nassella lepida*² Foothill needlegrass
- Sisyrinchium bellum*² blue-eyed grass

HERBACEOUS SPECIES
- Epilobium densiflorum² dense spike-primrose
- Limonium californicum² Marsh rosemary
SHRUB SPECIES

Calycanthus occidentalis*2 Spicebush
Cornus sericea2 western dogwood
(same as C. stolonifera)
Prunus ilicifolia*2 hollyleaf cherry
Ribes aureum*2 Golden currant
Rosa california2 California wild rose
Rubus parviflorus2 Thimbleberry
Rubus spectabilis2 Salmonberry

TREE SPECIES

Acer circinatum2 Vine Maple
Acer negundo2, 3 box elder
(v. Californicum)
Alnus rubra2, 3 red alder
Betula nigra river birch
Fraxinus latifolia2 Oregon ash
Populus fremontii1, 2, 3 Fremont’s cottonwood
Salix laevigata1, 2 red willow
Salix lasioplepis1, 2 arroyo willow
Salix lucida ssp. lasiandra1, 2 shining willow

1 Denotes species with phytoremediation capabilities
2 Denotes native species
* Denotes drought tolerant species
3 Denotes species with limited drought tolerance

Extended Detention Basin (with biotreatment soil)

Extended detention basins are intended to capture and detain water for longer periods (up to 5 days) than bioretention areas. They are designed to drain completely between storms. Plants in extended detention basins increase pollutant removal and assist with soil stabilization, therefore nutrient uptake and the ability to neutralize pollutants are priorities for species selection. Because extended detention basin are intended to capture and move large quantities of water, trees should not be planted in the basins; consult with the design engineer before specifying trees at the basin perimeter (top of bank). Shrub species are typically not specified for extended detention basins, but may be included only on the outer perimeter (top of bank) that they do not interfere with detention. Species should be adapted to periodic inundation and saturation and extended periods of dry conditions. Emergent, grass and herbaceous species for extended detention basins should consists of species that are able withstand extended periods of inundation. Supplemental irrigation will be necessary to maintain emergent species during extremely dry conditions. The following list includes plants appropriate for extended detention basins with biotreatment soil. Please see Table A-1 for plants suitable for extended detention basins that do not use biotreatment soil.

EMERGENT SPECIES

Artemisia douglasiana2 Mugwort
Carex barbara2 Santa Barbara sedge
Carex densa2 dense sedge
Carex obnupta2 slough sedge
Eleocharis macrostachya2 creeping spikerush
Juncus balticus1,2 baltic rush
Juncus bufonius2 toad rush
Juncus effusus1,2 Pacific rush
Juncus leseuni2 common rush
Juncus mexicanus2 Mexican rush
Juncus patens* blue rush
Juncus xiphioides iris-leaved rush
Limonium californicum2 Marsh rosemary
Phragmites spp. common reeds
Scirpus actutus2 Tule
Scirpus americanus1,2 three square
Scirpus californicus1,2 California bulrush
Spartina foliosa2 California cordgrass
Typha angustifolia2 narrowleaf cattail
Typha latifolia2 cattail

GRASS/HERBACEOUS SPECIES
Agrostis exarata2 spike bentgrass
Alopecurus aequalis2 shortawn foxtail
Alopecurus saccatus2 Pacific foxtail
Carex pansa* California meadow sedge
Carex praegracilus2 clustered field sedge
Chondropetalum tectorum Cape rush
Danthonia californica2 California oatgrass
Deschampsia cespitosa*,1,2 tufted hairgrass
Deschampsia cespitosa annual hairgrass
Ssp. Holciformis2
Deschampsia danthonioides2
Distichlis spicata2 salt grass
Eleocharis palustris2 creeping spikerush
Limonium californicum Marsh rosemary
Mimulus cardinalis2 scarlet monkeyflower
Muhlenbergia rigens*,2 deergrass

SHRUB SPECIES
Baccharis salicifolia2 mulefat
Comus sericea2 (same as C. stolonifera)
Physocarpus capitatus2 Pacific ninebark

TREE SPECIES
Acer negundo2 box elder
v. Califomicum
Alnus rhombifolia2,3 white alder
Alnus rubra2,3 red alder
Fraxinus latifolia2 Oregon ash
Platanus racemosa2,3 sycamore
Salix laevigata1,2 red willow
Salix lasiolepis1,2 arroyo willow
Salix lucida ssp. lasiandra1,2 shining willow
Sequoia sempervirens2 coast redwood

\begin{itemize}
\item 1 Denotes species with phytoremediation capabilities
\item 2 Denotes native species
\item * Denotes drought tolerant species
\item 3 Denotes species with limited drought tolerance
\end{itemize}

Pervious paving – Turf Block Pavers
Some pervious paving systems can be planted with grass or herbaceous species in order to assist with erosion prevention as well as promote infiltration and pollutant uptake. Plant species should be tolerant of compaction, have the ability to neutralize contaminants, and should not interfere with maintenance and use of the paved surface. Most plant species cannot tolerate frequent vehicular compaction. Therefore, turf block pavers are best suited for areas requiring infrequent access, such as emergency vehicle access routes. Paver manufacturer should be consulted regarding recommended and acceptable plant species.

GRASS SPECIES
Agrostis exarata2 spike bentgrass
Carex pansax2 California meadow sedge
Festuca idahoensis2 Idaho fescue
Festuca rubra 1,2 red fescue
Festuca rubra ‘Molate’2 Molate fescue

HERBACEOUS SPECIES
Anthemis nobilis 4 chamomile
Eschscholzia californicax2 California poppy
Thymus \textsuperscript{pseudolanuginosus4 woolly thyme}

\begin{itemize}
\item 1 Denotes species with phytoremediation capabilities
\item 2 Denotes native species
\item * Denotes drought tolerant species
\item 3 Denotes species with limited drought tolerance
\item 4 Denotes species that cannot tolerate vehicular compaction
\end{itemize}

Green roof
A green roof is intended to capture precipitation and roof runoff. Green roofs utilize a lightweight, porous planting substrate as a medium for plant growth. The depth and composition of this substrate is extremely important in determining types of plants that will be successful as part of a green roof system. Intensive green roofs, which can have up to 48” of substrate, can support a wider variety of plant types. The list below is only a sample of plants that could be suitable for an intensive green roof. Extensive green roofs, which have a depth of 3” to 7” of planting medium, are suitable for a limited number of grass and
herbaceous species. These roofs generally require little maintenance and should be designed to succeed with minimal irrigation. In addition to the species listed below, pre-vegetated mats can be utilized on extensive green roofs. Information can be found at the following website: www.hfmgv.org/rouge/livingroof.asp

EXTENSIVE GREEN ROOF

EMERGENT SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex barbarae</td>
<td>Santa Barbara sedge</td>
</tr>
</tbody>
</table>

GRASS SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festuca idahoensis</td>
<td>Idaho fescue</td>
</tr>
<tr>
<td>Nasella pulchra</td>
<td>purple needlegrass</td>
</tr>
<tr>
<td>Nassella lepida</td>
<td>Foothill needlegrass</td>
</tr>
<tr>
<td>Sisyrinchium bellum</td>
<td>blue-eyed grass</td>
</tr>
</tbody>
</table>

HERBACEOUS SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium</td>
<td>common yarrow</td>
</tr>
<tr>
<td>Allium spp</td>
<td>wild onion</td>
</tr>
<tr>
<td>Armeria maritima</td>
<td>sea pink</td>
</tr>
<tr>
<td>Clarkia spp</td>
<td>Clarkia</td>
</tr>
<tr>
<td>Eschscholzia californica</td>
<td>California poppy</td>
</tr>
<tr>
<td>Layia platyglossa</td>
<td>tidy tips</td>
</tr>
<tr>
<td>Linanthus spp</td>
<td>Linanthus</td>
</tr>
<tr>
<td>Lotus scoparius</td>
<td>deerweed</td>
</tr>
<tr>
<td>Sedum spp</td>
<td>stonecrop</td>
</tr>
<tr>
<td>Sempervivum spp</td>
<td>hen and chicks</td>
</tr>
<tr>
<td>Solidago spp</td>
<td>goldenrod</td>
</tr>
<tr>
<td>Thymus pseudolanuginosus</td>
<td>woolly thyme</td>
</tr>
</tbody>
</table>

SHRUB SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santolina spp</td>
<td>santolina</td>
</tr>
</tbody>
</table>

INTENSIVE GREEN ROOF

EMERGENT SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex barbarae</td>
<td>Santa Barbara sedge</td>
</tr>
<tr>
<td>Juncus patens</td>
<td>blue rush</td>
</tr>
</tbody>
</table>

GRASS SPECIES

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristida purpurea</td>
<td>purple three-awn</td>
</tr>
<tr>
<td>Calamagrostis X acutiflora</td>
<td>reed grass</td>
</tr>
<tr>
<td>Chondropetalum tectorum</td>
<td>Cape rush</td>
</tr>
<tr>
<td>Festuca californica</td>
<td>California fescue</td>
</tr>
<tr>
<td>Festuca idahoensis</td>
<td>Idaho fescue</td>
</tr>
<tr>
<td>Leymus triticoides</td>
<td>creeping wildrye</td>
</tr>
<tr>
<td>Muhlenbergia rigens</td>
<td>deergrass</td>
</tr>
<tr>
<td>Nasella pulchra</td>
<td>purple needlegrass</td>
</tr>
<tr>
<td>Nassella lepida</td>
<td>Foothill needlegrass</td>
</tr>
</tbody>
</table>

HERBACEOUS SPECIES
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium*1, 2</td>
<td>common yarrow</td>
</tr>
<tr>
<td>Allium spp.</td>
<td>wild onion</td>
</tr>
<tr>
<td>Armeria maritima2</td>
<td>sea pink</td>
</tr>
<tr>
<td>Clarkia spp. *2</td>
<td>Clarkia</td>
</tr>
<tr>
<td>Eschscholzia californica*2</td>
<td>California poppy</td>
</tr>
<tr>
<td>Layia platyglossa*2</td>
<td>tidy tips</td>
</tr>
<tr>
<td>Linanthus spp. *2</td>
<td>Linanthus</td>
</tr>
<tr>
<td>Lotus scoparius*2</td>
<td>deerweed</td>
</tr>
<tr>
<td>Mimulus aurantiacus*2</td>
<td>common monkeyflower</td>
</tr>
<tr>
<td>Mimulus cardinalis2</td>
<td>scarlet monkeyflower</td>
</tr>
<tr>
<td>Nepeta spp.*</td>
<td>catmint</td>
</tr>
<tr>
<td>Penstemon spp. *2</td>
<td>bearded tongue</td>
</tr>
<tr>
<td>Sedum spp.*</td>
<td>stonecrop</td>
</tr>
<tr>
<td>Sempervivum spp.*</td>
<td>hen and chicks</td>
</tr>
<tr>
<td>Solidago spp. 1</td>
<td>goldenrod</td>
</tr>
<tr>
<td>Thymus pseudolanuginosus</td>
<td>woolly thyme</td>
</tr>
<tr>
<td>Vigna unguiculata 1*</td>
<td>cowpea</td>
</tr>
</tbody>
</table>

SHRUB SPECIES *(MINIMUM 12” substrate depth)*

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenostoma fasciculatum*2</td>
<td>chamise</td>
</tr>
<tr>
<td>Arctostaphylos densiflora ‘McMinn’*2</td>
<td>manzanita ‘McMinn’</td>
</tr>
<tr>
<td>Baccharis pilularis *2</td>
<td>coyote brush prostrate</td>
</tr>
<tr>
<td>Berberis thunbergii</td>
<td>Japanese barberry</td>
</tr>
<tr>
<td>Ceanothus hearstiorum*2</td>
<td>ceanothus</td>
</tr>
<tr>
<td>Ceanothus spp. *2</td>
<td>ceanothus</td>
</tr>
<tr>
<td>Garrya elliptica*2</td>
<td>coast silk tassel</td>
</tr>
<tr>
<td>Echium candicans*</td>
<td>Pride-of-Madera</td>
</tr>
<tr>
<td>Heteromeles arbutifolia*2</td>
<td>toyon</td>
</tr>
<tr>
<td>Lavandula spp. *</td>
<td>lavender</td>
</tr>
<tr>
<td>Mahonia aquifolium*2</td>
<td>Oregon grape</td>
</tr>
<tr>
<td>Mahonia repens*2</td>
<td>creeping Oregon grape</td>
</tr>
<tr>
<td>Myrica californica*2</td>
<td>Pacific wax myrtle</td>
</tr>
<tr>
<td>Physocarpus capitatus*2</td>
<td>Pacific ninebark</td>
</tr>
<tr>
<td>Rhamnus Californica*2</td>
<td>coffeeberry</td>
</tr>
<tr>
<td>Santolina spp. *2</td>
<td>santolina</td>
</tr>
<tr>
<td>Trichostema spp. *2</td>
<td>woolly blue curls</td>
</tr>
<tr>
<td>Zauschneria californica*2</td>
<td>California fuchsia</td>
</tr>
</tbody>
</table>

TREE SPECIES *(minimum 36” substrate depth)*

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer circinatum2</td>
<td>Vine Maple</td>
</tr>
<tr>
<td>Arbutus unedo*</td>
<td>Strawberry Tree</td>
</tr>
<tr>
<td>Cercis occidentalis*2</td>
<td>redbud</td>
</tr>
</tbody>
</table>
Chilopsis sp. Desert willow
Crataegus* hawthorn
Lagerstroemia spp.* crepe myrtle

1 Denotes species with phytoremediation capabilities
2 Denotes native species
3 Denotes species with limited drought tolerance

* Denotes drought tolerant species

Note: These species have been selected among trees suitable for stormwater. A large number of tree species are suitable for intensive green roofs, and will depend on the type and depth of soil mix, microclimate and available space.

A.4 Planting Specifications

Planting plans and specifications must be prepared by a qualified professional and coordinated with other site development details and specifications including earthwork, soil preparation and irrigation (if used). Plans indicating a planting layout, with species composition and density, should be prepared on a site-specific basis. Reference the Bay Friendly Landscaping Guidelines prepared by Stopwaste.Org (available at www.bayfriendly.org), which outline principles and practices to minimize waste, protect air and water quality, conserve energy and water, and protect natural ecosystems, including:

- Evaluate site and assess the soil;
- Consider potential for fire;
- Select plants for appropriate size upon maturity, do not over-plant;
- Irrigation, if required, should be designed as a high efficiency, water conserving system; and
- Utilize compost (see the specification in the Bay-Friendly Landscaping Guidelines) and mulch to build healthy soils and increase the water holding capacity of the soil.

Propagation and Planting Methods

The propagation methods for different species will vary, depending upon type of plant and stormwater adaptation. In general, container stock will be utilized most commonly for green roofs, flow-through planters, tree well filters, vegetated swales and buffer strips and infiltration trenches. Bioretention areas and extended detention basins will generally utilize native plants available as transplants (plugs), pole cuttings and seed mixes.

Container Stock. Planting holes for container stock should be twice as wide and only as deep as the container size. Plant spacing should be determined on a site-specific basis. When planting, the root collar and base of the stem should be 1” above the adjacent soil surface. Soils should be backfilled and tamped down to assure contact with the roots. The planting should be watered-in promptly to promote the settling of soil. If appropriate, container plantings may receive a balanced time-released fertilizer tablet, quantity and placement per manufacturer's recommendation, placed in the planting hole prior to installation of the plant. Planting berms for water retention and mulch shall be used to enhance plant establishment. Trees shall be staked or guyed to provide interim support until established.
Transplants (Plugs). Transplanted plant divisions, referred to here as “plugs”, should be planted during the fall dormant period, preferably between October 1 and November 15 after first soaking rain. Plugs should be collected from a suitable collection site in the vicinity of the constructed basins. Plugs are clumps of plant roots, rhizomes or tubers combined with associated soil that can be manually removed, or salvaged with an excavator or backhoe. The maximum recommended size is 1 foot x 1 foot. Whole plants or plant divisions can be utilized. The plugs should be from healthy specimens free of insects, weeds and disease. The plugs should be spaced from 1 foot to 6 feet apart, depending on the size of the plug. Smaller plugs can be planted at the minimum distance to promote faster spreading and cover. Larger plugs from cattail and bulrush species should be planted at 3-foot to 6-foot intervals.

To plant a plug, prepare a hole slightly wider than the diameter of the plug, and place the roots system of the plug in the hole. Do not over-excavate the hole depth or the plant will settle below grade. A shovel could be used to create the planting hole. Manual planting with a spade is recommended for wet soils. Power augers can be used for creating holes in dry soils. Alternatively, a trench could be created along the narrow axis of the extended detention basin, and planting material manually placed at specified elevations in relation to the proximity of permanently saturated soils. To plant a plug with an established root system, the base of the stem and top of the root collar should be level with the ground surface. Tubers should be secured to prevent floating. Rhizomes should be placed in the soil with a slight upward angle.

The hole or trench containing the plug(s) should be backfilled with soil and the soil tamped down to assure good soil contact and secure the plug. The vegetative portion of the plant should be cut back to prevent water loss and wilting, and encourage the growth of roots and new shoots. Plugs of wetland plants should be grown in saturated soil. The soil should not be allowed to dry out after planting. Plugs should be planted immediately, when possible. When necessary, plugs can be stored in a cool, moist, shaded location for a maximum of one day. Plants must be thoroughly watered.

Pole Cuttings. Pole cuttings should be collected from the 1-year old wood of dormant trees and have a minimum of 5 viable nodes. The parent material should be healthy and free of diseases. The basal area of the pole cutting should be a minimum of one to two inches in diameter; however, the diameter at the base should not exceed 2 inches. The optimum diameter width of the base is 1 inch. The length of the cutting should be a minimum of 2 feet and should not exceed a maximum of 4 feet in length. Generally, 75 percent of the length of the cutting should be planted beneath the soil surface.

Pole cuttings should be collected no more than 2 days prior to planting. Cuttings should be placed in cool water to promote swelling of the nodes. Water should be kept fresh by aeration and/or by daily replacement. The pole cuttings should be placed in a hole approximately 3 feet deep (as determined by the length of the cutting) and backfilled with native soil, or a rich organic medium mixed with native soil. Soil should be tamped down to remove air pockets and assure soil contact with the cutting.

Seeding. Seeding should be conducted after plugs, container stock and pole cuttings are installed. Hydroseeding or broadcast method shall be utilized as appropriate for the size and accessibility of the area. Soil surface should be scarified prior to seeding. Do not damage previously planted vegetation. The seeds should be planted in fall, ideally in October.
Seeds should be broadcast or hydroseeded over the specified planting area. With broadcast seeding, the seed should be applied with hand-held spreaders to scarified soil. The soil surface should then be raked to cover the seeds with about one-eighth to one-quarter inch of soil to discourage predation, and tamped or rolled to firm soil surface. Plant seeds at the ratios and rates specified by the supplier. Seed should be free of weeds and diseases. The certified germination percentage should be provided by the supplier.

Water Level Management and Irrigation for Plant Establishment

All newly planted material will need careful attention to watering requirements to ensure proper establishment. As mentioned in the introduction, it is important to select plants based on specific site conditions, which will affect the availability of water for plant use. In addition, grouping plants with similar water requirements can help reduce irrigation needs. The specific approach will vary for irrigated and non-irrigated conditions, and for each stormwater application. In most cases, stormwater applications will require a permanent irrigation system which shall be designed to maximize water conservation. Irrigation specifications and design plans shall be provided.

Plants such as shrubs and trees grown in naturalized areas that are not saturated to the surface or inundated shall be irrigated with drip irrigation. The irrigation system shall remain in place for a minimum of three years, and should continue until it is demonstrated that the plantings can survive on annual rainfall and/or groundwater. Seeded areas do not need irrigation in years of normal rainfall. If a period of drought occurs after seeding, supplemental watering may be needed for germination in the first year.

The plants on the bottom and edge of the constructed basins should be allowed to become established for one growing season prior to the onset of significant flooding that will inundate the plantings for extended periods. The types of plants recommended for these locations are rushes, sedges, grasses and herbaceous species. Initially, saturated soils are required for the bioretention areas and extended detention basins during the establishment period of the plantings. After the plants have become established, inundation with a surface depth of 1 cm to 2 cm alternating with short dry periods is recommended for the basins during the first year. Periodic shallow flooding of these basins can slow the growth of non-native weedy terrestrial species in the wetland system; however, the water depth should not be greater than the height of the plants. This initial irrigation regime will prevent plant mortality from dry periods or excessive flooding in the first year, and reduce the growth of non-native weedy species.

Emergent species should be planted in saturated soil so the plants will become established. For emergent species, the water level in the first year should be maintained to allow for soil saturation or shallow inundation around the base of the plants. Significant flooding and inundation of stems and leaves of the plants should be avoided the first year. Tall plugs and plantings can tolerate greater depths of inundation if a significant portion of the stems and leaves of the plantings remain above the water surface.
A.5 Monitoring and Maintenance

General Requirements
All planted areas shall be monitored and maintained as required to ensure proper establishment by a Contractor with a valid California C-27 contractor’s license. Frequency of site visits and required maintenance practices will vary depending upon the stormwater measure and plant selection. Maintenance shall include watering, cultivation, weeding and pruning as necessary to maintain optimum growth conditions and, as appropriate to the specific stormwater measure, to keep the planted areas neat and attractive in appearance. In all instances, controlling weeds and unwanted growth with chemical applications is prohibited.

The contractor shall be familiar with the design and function of the specific stormwater measure(s) to ensure that the plantings are maintained appropriately and do not interfere with the efficient runoff drainage and filtration.

Ongoing management of invasive weed species is required in all applications. Monthly hand weeding will allow the naturalized vegetation to take hold, and will ultimately be less costly than less frequent, and more intensive clearing. Regular application of compost mulch material that resists floating with surface runoff will also help control weed growth.

Erosion Control
Particularly with landscapes that are not fully established, contractors will need to monitor and evaluate potential for erosion and sediment accumulation in the runoff, which will influence irrigation scheduling and as well as determine the need for additional erosion control measures. Soil can be protected from erosion by a number of methods including:

- Keep the soil covered with vegetation to the extent possible;
- Slow water runoff by using compost berms, blanket, socks or tubes along slopes;
- Cover bare soil with a minimum of 3” mulch cover;
- Minimize the use of blowers in planting beds and on turf;
- In areas that will be inundated, use compost mulch that is not prone to washing into storms drains; wood chips may be used on slopes above area of inundation; and
- Store leaf litter as additional much in planting beds as appropriate.

Irrigation Systems
Where irrigation systems have been installed for temporary or permanent irrigation, the contractor shall maintain the irrigation system for optimum performance, as per manufacturer’s specifications. Contractor shall inspect the entire system on an ongoing basis, including cleaning and adjusting all sprinkler and bubbler heads, drip emitters and valves for proper coverage. Contractor shall monitor the irrigation system while operating to identify and correct problems with water runoff or standing water.

Monitor soil moisture within plant root zones using a soil probe or shovel and adjust irrigation schedules accordingly if a soil moisture sensor is not being utilized to signal the irrigation controller. If a Weather-Based Irrigation Controller (WBIC), otherwise known as a “Smart” Controller is not utilized on the project, irrigation shall be scheduled using a water budget
approach, basing irrigation frequency on evapotranspiration data (ET) to avoid over-irrigation of plant material. Adjust irrigation frequency within each hydrozone area a minimum of every four weeks to respond to expected adjustments in ET data.

If a standard turf mix is used in lieu of a no-mow variety, implement grasscycling, where appropriate to the stormwater treatment measure. Grass clippings shall not be carried into the drainage structures. Refer to A Landscaper's Guide to Grasscycling available from StopWaste.Org at www.bayfriendly.org.

Bioretention and Extended Detention Basins

In bioretention and extended detention basins, in particular, non-native invasive plant species should be carefully monitored and controlled to reduce competition with the native plantings and to assure the success of the revegetation activities. The establishment of weeds and invasive species in the bottom of the basins can be partially controlled during the establishment period by implementing the watering schedule of initial saturation followed by alternating periods of shallow inundation and dry soil. Manual methods of weed removal should be conducted on the bottom, edge and side of the basins when these areas are not inundated. Areas with hydroseeding on the banks of the basins should be weeded carefully to avoid removal of the native species.

Weeding should be conducted regularly the first two years to prevent the growth, flowering, and seed set of non-native weeds and invasive species. After the first two years, weeding frequency will be determined on a site-specific basis as determined by the type of weeds and seasonal growth cycle of the weed species. In general, weeding once a month will be necessary to avoid more extensive and costly eradication in the future.

Long-term maintenance tasks on the banks of the basins will include continued control of nonnative weeds and invasive plants, and control of erosion. Erosion could include gullies, rills and sheet erosion. Actions to control erosion should include redirecting or dissipating the water source. Recontouring and subsequent mulching and/or reseeding with erosion control species may be required in bare areas. In the event of extensive die-off of the native plant species, replant the bare areas. Where the event that caused plant mortality was not a natural catastrophic occurrence, the site condition that resulted in the die-off should be investigated and remedial action to correct the problem should be undertaken prior to replanting.

A.6 Bay-Friendly Landscaping and IPM

This section provides a summary of Bay-Friendly landscaping and integrated pest management (IPM) techniques, based on the Bay-Friendly Landscaping Guidelines prepared by Stopwaste.Org (available at www.bayfriendly.org).

Bay Friendly Landscaping

Bay-Friendly landscaping is a whole systems approach to the design, construction and maintenance of the landscape in order to support the integrity of the San Francisco Bay watershed. Project sponsors are encouraged to use landscape professionals who are familiar with and committed to implementing Bay-Friendly landscaping practices from the initial plant selection through the long-term maintenance of the site. This section summarizes Bay-Friendly Landscaping practices that may be implemented information that project
sponsors need about how these practices can benefit water quality of the Bay and its tributaries. Bay-Friendly landscaping is based on 7 principles of sustainable landscaping and features the following practices:

1. **Landscape Locally.** Landscapes designed to be part of the larger ecosystem of the Bay Area can both protect the health, diversity and sustainability of this valuable resource while making the most of the natural processes of a well-functioning ecosystem. By selecting plants appropriate to the climate, exposure, soils, drainage and topography, plantings can be established more successfully with less consumption of resources and intensive maintenance. Landscape designers are also encouraged to use local, well-adapted plant communities as models and to consider the potential for fire when developing the plant palette for a project.

2. **Less to the Landfill.** Reducing waste—and thus conserving landfill space and fossil fuel for hauling this material to the landfill—starts with not generating it in the first place. Plant trimmings pruning can be reduced by selecting plants that can grow to their natural size is the space allotted them, by avoiding the use of sheared hedges as design elements and not specifying invasive species (see the list in Appendix A). Prune selectively, and avoid excessive plant growth by applying water and fertilizer judiciously.

The second step is to recognize the value of plant debris, and to keep this organic matter on the site, using it as a gardening resource for mulching and composting.

3. **Nurture the Soil.** Returning organic matter to the soil, in the form of plant debris, is the link between protecting our watershed and protecting our watershed. Healthy soil that is rich in organic matter is full of life and can store water and actively cycle nutrients, regulate and partition water flow, neutralize pollutants, and resist pests. The following practices will encourage a complex soil community of microorganisms, worms, and other beneficial creatures. Base the landscape design on a soil analysis and understanding of soil texture, structure and drainage. The following practices are recommended during construction:

- Remove and store the topsoil for re-spreading after grading;
- Limit construction traffic to areas that will not be landscaped;
- Control soil erosion;
- Amend the soils with compost before planting; and
- Specify and maintain an adequate layer of organic mulch, taking into account water flow and designing to avoid the loss of mulch with runoff.

Maintenance practices to benefit soils and the watershed include allowing grass clippings to remain on the lawn; feeding soils with naturally based products including compost and a water extract of mature compost, instead of synthetic, fast release fertilizers and avoiding pesticides.

4. **Conserve Water.** Amending the soil with compost and keeping it covered with mulch can increase soil permeability and water-holding capacity, reduce water loss through evaporation and decrease the need for irrigation. Planting appropriate, drought tolerant California natives or Mediterranean plants also reduces water consumption for irrigation, as well as consumption of other resources for mowing, fertilizing, and spraying. Minimize the use of turf grasses that require regular watering and fertilizing to remain green,
particularly on slopes or in narrow, irregular hard to water shapes. Arrange plants in “hydrozones” of low, medium or high water demand. Onsite collection systems can allow the use of rainwater, or the reuse of “graywater” – uncontaminated wastewater from sinks, bathtubs, and washing machines. Specify, install and maintain high-efficiency irrigation systems, and train landscaping staff to manage irrigation according to need.

5. **Conserve Energy.** Conventional landscapes are very fossil fuel consumptive. Selecting plantings that do not require regular mowing or pruning, fertilizing and watering can help reduce this demand and restore our landscapes to those that are more productive than consumptive. Tree plantings can be used to moderate building temperatures, and to shade paved areas and air conditioners. Trees can also intercept significant amounts of rainfall each year and thus help control stormwater runoff. Specify as large a tree as possible but be sure that it will be allowed to grow to its natural shape and size in the allotted space. Outdoor lighting should be designed to use less energy and minimize “light pollution.” Choose and maintain energy-efficient landscaping equipment to conserve fuel. Specifying local products and suppliers reduces the energy needed to transport products and supports local economies.

6. **Protect Water and Air Quality.** Bay-Friendly landscaping can help protect water quality by increasing on-site infiltration and reducing runoff, reducing pollutants in runoff, and increasing the soil’s ability to remove pollutants from runoff. It can help protect air quality by reducing fossil fuel consumption, recycling plant debris onsite, and planting trees to remove carbon dioxide and absorb air pollutants. Many of the practices described previously, such as minimizing high input decorative lawns, keeping soil covered with mulch and planting trees play a critical role in protecting water and air quality. An additional very important component of Bay-Friendly landscaping is reducing the use of pesticides through integrated pest management, which is described in a separate section, below.

7. **Create and Protect Wildlife Habitat.** Although we tend to rely on parks and open space to preserve wildlife habitat, developed landscapes can also provide food, water, shelter and nesting sites for birds, butterflies, beneficial insects, and other creatures. This can be accomplished by providing a diverse landscape that includes annuals, biennials and perennials of many different sizes, shapes, colors and textures; by choosing California natives first; providing appropriate water and shelter for wildlife; eliminating the use of pesticides; and planning sites to conserve or restore natural areas and wildlife corridors.

Integrated Pest Management

All creeks in the San Francisco Bay Area exceed water quality toxicity limits, primarily due to the pesticide Diazinon entering urban runoff. Although the residential use of Diazinon is currently being phased out, the use of a group of highly toxic chemicals, called pyrethroids, is increasing. Because all pesticides are toxins, an integrated pest management (IPM) places a priority on avoiding their use. IPM is a holistic approach to mitigating insects, plant diseases, weeds, and other pests. Projects that require a landscaping plan as part of a development project application are required encouraged to use IPM, as indicated in each agency’s source control measures list, which is based on the countywide Source Control Model. Avoiding pesticides and quick release synthetic fertilizers are particularly important when maintaining stormwater treatment measures, to protect water quality.
IPM uses many strategies to first prevent, and then control, but not eliminate, pests. It places priority on fostering a healthy environment in which plants have the strength to resist diseases and insect infestations, and out-compete weeds. Using IPM requires an understanding of the life cycles of pests and beneficial organisms, as well as regular monitoring of their populations. When pest problems are identified, IPM considers all viable solutions and uses a combination of strategies to control pests, rather than relying on pesticides alone. The least toxic pesticides are used only as a last resort. IPM features the following practices:

- **Prevent Pest Problems.** Fostering a healthy soil and selecting appropriate plant communities for the site helps reduce the susceptibility to disease and other pests. Landscape designs should include a diversity of species that are well-suited to the site; specify resistant varieties and native species, including plants that attract beneficial insects; place plants a proper distance from buildings; avoid over-planting; and include compost in the soil specifications. Cultural methods of avoiding pests during construction and maintenance include the following:
 - Selecting plant material that is free from disease and insects;
 - Planting at the right depth;
 - Watering thoroughly but not over-watering;
 - Keeping mulch on the soil surface at all times, keeping it away from root crowns;
 - Using slow release fertilizer, if necessary, and not over-fertilizing;
 - Pruning judiciously;
 - Eliminating noxious weeds before they go to seed or spread;
 - Cleaning equipment after use on infected plants;
 - Inspecting and removing invasive plant parts or seeds from clothing, tools and vehicle before leaving an infected site; and
 - Cleaning up fruit and plant material that is infected with insects or diseases.

- **Watch for and Monitor Problems.** Landscaping firms should provide their staff with the time and resources to learn to identify both pest and beneficial organisms, and train residential clients to monitor and record pest problems. Plants should be checked often for vigor and signs of pests. Clarify which problems are the result of pests and not other environmental problems. Evaluate the results of any treatments, and check regularly with the Bio-Integral Resource Center (www.birc.org) or UC Davis (www.ipm.ucdavis.edu) for up-to-date resources and information.

- **Education is Key.** Many property owners have unrealistic standards of absolute pest control and need to learn how landscapes can tolerate a certain level of pests without resulting in significant, or even noticeable, damage. Landscape professionals should educate their clients and refer them to www.ourwaterourworld.org for fact sheets and information on alternative pest control strategies.

- **Use Physical and Mechanical Controls.** If pests are identified as the source of unacceptable levels of damage, physical barriers or mechanical techniques are the first line of control. This can include the carefully timed and conducted pruning of infested plant material or removal of whole plants, spraying aphids with a strong jet of water, using pheromone or sticky traps to keep ants and other insects away or hand-picking large adult insect pests and larvae as they appear.
• **Use Biological Controls.** Living organisms can also be used to keep pest populations under control. The most important biological controls appear naturally and will be abundant in a landscape that is not heavily treated with pesticides. Encourage beneficial insects by planting a wide range of plants that flower throughout the year (see list in the Bay-Friendly Landscaping Guidelines), and introduce natural predators. Buy all biological controls from a reputable source, and do not use pesticides except as a last resort.

• **Least Toxic Pesticides are a Last Resort.** The least toxic and least persistent pesticide is used only when monitoring indicates that preventative and non-chemical methods are not keeping pests below acceptable levels. Pesticides are not used on a calendar basis. When used, their efficiency is maximized by understanding the pest and beneficial life cycles, by careful timing and targeted application.

A.7 Planting Tips for Single-Family Homes

It is recommended that homeowners and builders follow the practices of Bay Friendly Landscaping and Integrated Pest Management (see Section A.6) to minimize pesticide usage and over-watering. Planting tips for single-family homes include:

- Avoid using invasive species such as iceplant and eucalyptus;
- Minimize turf grass areas to reduce need for fertilizer and excessive watering;
- Use appropriate species for soil and climate conditions; and
- Use compost instead of fertilizer.

Please review Section A.6 for complete information on Bay Friendly Landscaping and Integrated Pest Management.

A.8 Nursery Sources for Native Plants

It is recommended that the native plants used in treatment controls be grown by a qualified nursery. Seed collection should be conducted by a qualified botanist and/or nursery staff. Seed should be collected locally from selected sites to maintain the genetic integrity of the native plant species. The seeds shall be propagated by the nursery for planting during the fall dormant season. The appropriate container size for each species shall be used by the nursery. An asterisk (*) indicates a nursery with a dedicated native plant section.

Berkeley Horticultural Nursery
1310 McGee Ave., Berkeley, CA
510-526-4704

Clyde Robin Seed Company
Castro Valley, CA
510-785-0425
www.clyderobin.com

East Bay Nursery
2332 San Pablo Ave., Berkeley, CA
510-845-6490
http://www.eastbaynursery.com/

Golden Nursery
1122 2nd Street
San Mateo, CA 94401
(650) 348-5525
www.goldennursery.com

Larner Seeds
PO Box 407
Bolinas, California
415-868-9407, info@larnerseeds.com
webmaster@larnerseeds.com

Mines Road Natives
17505 Mines Road, Livermore, CA
925-371-0887
Note: by appointment only.

Mostly Natives Nursery
27235 Highway 1, Tomales, CA
707-878-2009
www.mostlynatives.com

Native Here Nursery
101 Golf Course Road, Berkeley, CA
510-549-0211
http://www.ebcnps.org/NativeHereHome.htm

Oaktown Native Plant Nursery
1019 Bella Vista Ave., Oakland, CA
510-534-2552
http://www.oaktownnativenuery.info/

Pacific Coast Seed
533 Hawthorne Place
Livermore, CA
925-373-4417
www.pcseed.com

Redwood City Nursery
2760 El Camino Real
Redwood City, CA 94061
(650) 368-0357
www.rcnursery.com

Roger Reynolds Nursery
133 Encinal Ave
Menlo Park, CA 94025
(650) 323-5612
www.rogerreynoldsnursery.com
Watershed Nursery
Berkeley, CA
510-548-4714
www.thewatershednursery.com

Wegman’s Nursery
492 Woodside Road
Redwood City, CA 94061
(650)368-5821
www.wegmannursery.com

Yerba Buena Nursery
19500 Skyline Blvd.
Woodside, CA 94062
(650) 851-1668
www.yerbabuenanursery.com

References
A. StopWaste.Org www.bayfriendly.org
 1. Bay-Friendly Landscape Guidelines
 2. A Landscaper’s Guide to Grasscycling
 3. A Landscaper’s Guide to Mulch

Example Development Scenarios

1. Parking Lot Example

2. Podium Type Building Example
B.1 Parking Lot Example

Introduction

This example shows a proposed parking lot in San Mateo County with bioretention areas. LID feasibility/infeasibility criteria (Appendix I) shall be used to determine whether bioretention areas may be used and methods to design bioretention areas to maximize infiltration and evapotranspiration.

Typical Parking Lot

Summary of Stormwater Controls

Site Design Measures

- Landscaped areas within two drainage management areas are designed to function as self-treating areas A and B, as described in Section 4.1 of this manual, with one going to the bioretention area and one bypassing the bioretention area

Source Controls

- Stenciling storm drain inlets
- Landscape designer will be asked to follow Integrated Pest Management principles

Treatment Measures

- Bioretention areas

The example parking lot site description:

The project site is 1.2 acres with 1% slope from edge of lot to street.
The site has one ingress/egress point.
Sidewalks shall be graded toward landscaped areas. The parking lot will have standard asphalt paving. The parking lot will have landscaping as an amenity (not used for stormwater treatment).

All areas will be graded to drain to bioretention areas along the perimeter of the site. Parking lot slopes are approximately 1%.

Bioretention areas are sized following the procedures in Chapter 5 and the technical guidance sheets presented in Chapter 6.

The following shows sizing and calculations of the site and the treatment measures used.

Typical Bioretention Area
Procedure for BMP sizing:

A1. List areas to each treatment measure.

Area A Landscaping 7,868 square feet (to bioretention area)
Area A Paving 6,788 square feet
Total Area A 14,656 square feet

Area B Landscaping 11,497 square feet (self-treating area that bypasses bioretention area)
Area B Paving 24,491 square feet
Total Area B 35,988 square feet

A2. Account for landscaped areas. The treatment facility designer has the option of bypassing or treating the runoff from the self-treating areas. Landscape areas are considered as self-treating and can be directed to the storm drain system without flowing through treatment facilities. Where landscape areas flow through a bioretention area, convert landscape area to equivalent impervious area by multiplying by 0.1.

At Area A, the landscape area is directed through the bioretention area.

Area A Landscaping 7,868 square feet * .1 = 787 square feet
Area A Impervious Area 6,788 square feet
Equivalent Impervious Area for hydraulic sizing 7,575 square feet

At Area B Landscaping is conveyed directly to the storm drain system.

Area B Impervious Area for hydraulic sizing 24,491 square feet

A3. Simplified sizing method for bioretention area (ignoring storage for a flow based BMP). For Area A, multiply the Equivalent Impervious Area from A2 by a sizing factor of 0.04. For Area B, multiply the impervious surface from A1 by a sizing factor of 0.04.

The 4% ratio is for planning review and is from 0.2 inches of rainfall per hour inflow divided by 5 inches/hour surface loading rate.

Area A 7,575 square feet * 0.04 = 303 square feet of bioretention treatment area.
Area B 24,491 square feet * 0.04 = 980 square feet of bioretention treatment area.

Total Treatment Area is 1,283 square feet using the flow based approach with no allowance for storage.
A4. Determine the Unit Basin Storage Volumes for 80 Percent Capture using 48-hour drawdown. Using Table 5-3 of Chapter 5 based on 100 percent impervious area. Adjust this volume for mean annual precipitation. For a site near San Francisco Oceanside (Region 7, as shown in the map in Appendix C) with a mean annual precipitation of 20 inches, use 0.72” unit basin storage volume for a 19.3 inch mean annual precipitation for 100 percent impervious area. Adjust to **0.75 inches** (0.72 * 20”/19.3”) at 20 inch mean annual precipitation. For both Areas A and B, use 0.75 inches (rounded for these calculations). For this example, a rainfall intensity of 0.2 inches per hour is used to calculate runoff for the flow-based method. Other methods may be used to calculate the rainfall intensity for the flow-based method.

A5. Calculate the Water Quality Design Volume. The water quality design volume is the equivalent impervious area from Step A3 times the adjusted unit basin storage volume. (For Area A, 7,575 square feet * 0.75 inches * 1/12 feet per inch = **473 cubic feet**. For Area B, 24,491 * 0.75 inches * 1/12 feet per inch = **1,531 cubic feet**.)

A6. Use a constant surface loading rate of **5 inches per hour** as required by the Permit for use with treatment soils.

A7. Determine the Rain Event Duration. Assume that the rain event that generates the required unit basin storage volume of runoff determined in Step A4 occurs at a constant intensity of 0.2 inches/hour from the start of the storm (i.e., assume a rectangular hydrograph). Calculate the duration of the rain event by dividing the unit basin storage volume by the intensity. In other words, determine the amount of time required for the unit basin storage volume to be achieved at a rate of 0.2 inches/hour. For example, if the unit basin storage volume is based on 0.75 inches rainfall, the Rain Event Duration is 0.75 inches ÷ 0.2 inches/hour = 3.78 hours. **(for these calculations, round to 3.8 hours)**

A8. Compute Volume of Runoff that filters through treatment soil during a storm.

Start by using a bioretention area that is about 25% smaller than the bioretention area calculated in Step A2.

For Area A, 272 – (0.25 × 303) = **227 square feet**. Calculate the volume of runoff that filters through the treatment soil at a rate of 5 inches per hour (the design surface loading rate for bioretention facilities), for the Rain Event Duration calculated in Step A7. For a bioretention treatment area of 227 square feet, with a surface loading rate of 5 inches per hour for a Rain Event Duration of 3.8 hours, the volume of treated runoff = 227 square feet × 5 inches/hour × (1 foot/12 inches) × 3.8 hours = **359 cubic feet**.

For Area B, 980 – (0.25 × 980) = **735 square feet**. Calculate the volume of runoff that filters through the treatment soil at a rate of 5 inches per hour, for the Rain Event Duration calculated in Step A7. For a bioretention treatment area of 735 square feet with a surface loading rate of 5 inches per hour for a Rain Event Duration of 3.8 hours, the volume of treated runoff = 735 square feet × 5 inches/hour × (1 foot/12 inches) × 3.8 hours = **1,164 cubic feet**.
A9. Calculate the portion of the required capture volume remaining after treatment is accomplished by filtering through the treatment soil. The result is the amount that must be stored in the ponding area above the reduced bioretention area assumed in Step A8.

For Area A, Step A5, the volume of runoff is 473 cubic feet. From Step A8, the amount treated during the storm duration is 359 cubic feet. The difference between the total water quality design volume and the total treated volume (473 – 359 cubic feet = 114 cubic feet) is the amount that must be stored. If this volume is stored over a surface area of 227 square feet, the average ponding depth would be 114 cubic feet ÷ 227 square feet = 0.50 feet or 6 inches.

For Area B, Step A5, the volume of runoff is 1,531 cubic feet. From Step A8, the amount treated during the storm duration is 1,164 cubic feet. The difference between the total storm volume and the total treated (1,531 – 1,164 cubic feet = 367 cubic feet) is the amount that must be stored. If this volume is stored over a surface area of 735 square feet, the average ponding depth would be 367 cubic feet ÷ 735 square feet = 0.50 feet or 6.0 inches.

A10. Check to see if the average ponding depth is between 6 and 12 inches, which is the recommended allowance for ponding in a bioretention facility or flow-through planter. If the ponding depth is less than 6 inches, the bioretention design can be optimized with a smaller surface area (i.e., repeat Steps A8 and A9 with a smaller treatment area). If the ponding depth is greater than 12 inches, a larger surface treatment area will be required. In the example for Area A, the ponding depth is exactly 6 inches. This is achieved with a 227 square foot bioretention area, which is about 3 percent of the equivalent impervious area draining to the Area A bioretention area. For Area B, the depth is exactly 6 inches. This is achieved with a 735 square foot bioretention area, which is about 3 percent of the impervious area draining to the Area B bioretention area. The area of either of these bioinfiltration facilities may be made smaller if necessary.
B.2 Podium Type Building Example

Introduction
• This example is to show a proposed podium type building in San Mateo County, with flow-through planters. LID feasibility/infeasibility criteria (Appendix I) need to be used to determine whether the use of flow-through planters will be allowed.

Summary of Stormwater Controls

Site Design Measures
• Multistory building above covered parking structure

Source Controls
• Covered trash storage areas
• Landscape designer will be asked to follow Integrated Pest Management principles

Treatment Measures
• Flow-through planters

Typical Podium Building

The example podium style building site description:
The project site is approximately 25,000 square feet.
The site is Type D soil with expected compaction of 95%.
Lot line is assumed to be to the edge of city right-of-way (sidewalks).
The proposed podium building is a zero lot line design with flow through planters in the center of the building around a concrete patio and down at ground level.

The podium building is a mixed use building with residential units on the top floors, retail space on the second floor and parking on the bottom floor. The building mechanical facilities and trash facilities are also on the bottom floor.

The roof area of the podium building consists of approximately 9,000 square foot patio, 1,000 square feet of flow through planters and 15,000 square feet of roof.

Off site sidewalks and driveways will be graded toward street.

The ground floor is a concrete slab with buildings and a covered parking structure. There is no potential for infiltration. The soils within the planter will be at least 18 inches of treatment soil with a surface loading rate of 5 inch/hour. A 12-inch layer of drain rock will be placed around the perforated underdrain to allow for dewatering of the flow through the planter.

The flow through planter areas will connect directly to the storm drain system through a system of perforated underdrains and overflow pipes.

The flow through planter shall have splash blocks at rain water leader discharge points to protect against erosion.

The following steps show the sizes and calculations for the Podium building treatment measures.

Source Control

Parking and trash shall be under the building and covered.
Procedure for BMP sizing:

B1. List areas to each treatment measure. (“A” in Q = CIA)

<table>
<thead>
<tr>
<th>Area</th>
<th>Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impervious Patio Surfaces</td>
<td>9,000</td>
</tr>
<tr>
<td>Roof Surfaces</td>
<td>15,000</td>
</tr>
</tbody>
</table>

B2. Flow through bioretention area (ignoring storage for a flow based BMP). Multiply the impervious surface from B1. by a sizing factor of 0.04.

The total impervious area from Step B2. is 24,000 square feet. 4% of 24,000 square feet is 960 square feet. Total Treatment Area is 960 square feet using the flow-based approach with no allowance for storage in the surface ponding area.

B3. Combination Flow and Volume Method. The approach assumes that all of the design rainfall becomes runoff, and thus it is appropriate for use where the drainage area to the flow through planter is completely impervious.

<table>
<thead>
<tr>
<th>Area</th>
<th>Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patio Impervious Surfaces</td>
<td>9,000</td>
</tr>
<tr>
<td>Roof Impervious Surfaces</td>
<td>15,000</td>
</tr>
<tr>
<td>Impervious Area</td>
<td>24,000</td>
</tr>
</tbody>
</table>

B4. Determine the Unit Basin Storage Volumes for 80 Percent Capture using 48-hour drawdown. using Table 5-3 of Chapter 5 based on 100 percent impervious area. Adjust this volume for mean annual precipitation. For a site near Palo Alto (Region 4, as shown in the map in Appendix C) with a mean annual precipitation of 16 inches, use 0.64” rainfall for a 14.6 inch mean annual precipitation and adjust to 0.7 inches (0.64 * 16”/14.6”) at 16 inch mean annual precipitation. For these calculations, round to 0.7 inches.

B5. Calculate the water quality design volume. The water quality design volume is the area from Step B3. times the 48-hour Rainfall Volume. (24,000 square feet * 0.7 inches * 1/12 feet per inch = 1,400 cubic feet.)

B6. Use a constant surface loading rate of 5 inches per hour through the soil as required by the Permit for use with treatment soils.

B7. Assume that the rain event that generates the required unit basin storage volume 0.2 inches/hour from the start of the storm (i.e., assume a rectangular hydrograph). Other methods may be used to calculate the rainfall intensity for the flow-based method. Calculate the duration of the rain event by dividing the unit basin storage volume by the intensity. In other words, determine the amount of time required for the unit basin storage volume to be achieved at a rate of 0.2 inches/hour. For the example, the unit basin storage volume is 0.7 inches, the rain event duration is 0.7 inches ÷ 0.2 inches/hour = 3.5 hours.
B8. Compute the volume of runoff that filters through the treatment soil during a storm.

Start by using a bioretention area that is about 25% smaller than the bioretention area calculated in Step B2. Using the example, 960 – (0.25 \times 960) = 720 square feet. Calculate the volume of runoff that filters through the treatment soil at a rate of 5 inches per hour (the design surface loading rate for bioretention facilities), for the duration of the rain event calculated in Step B7. For a bioretention treatment area of 720 square feet, with a surface loading rate of 5 inches per hour for a duration of 3.5 hours, the volume of treated runoff = 720 square feet \times 5 \text{ inches/hour} \times (1 \text{ foot/12 inches}) \times 3.5 \text{ hours} = \textbf{1,050 cubic feet}.

B9. The difference between the water quality design volume of runoff from Step B5 and the volume that flows through the planter for the storm duration from B8 is 1,400 cubic feet – 1,050 cubic feet = \textbf{350 cubic feet}. If this volume is stored over a surface area of 720 square feet, the average ponding depth would be 350 cubic feet \div 720 \text{ square feet} = \textbf{0.49 feet or 5.9 inches}.

B10. Check to see if the average ponding depth is between 6 and 12 inches, which is the recommended allowance for ponding in a bioretention facility or flow-through planter. If the ponding depth is less than 6 inches, the bioretention design can be optimized with a smaller surface area (i.e., repeat Steps B8 and B9 with a smaller treatment area). If the ponding depth is greater than 12 inches, a larger surface treatment area will be required. In this example, the ponding depth of 5.9 inches is slightly less than the recommended range of 6 to 12 inches. A repetition of steps B8 and B9 with a bioretention area that is 30 percent smaller than the bioretention area calculated in Step B2 is provided below.

B.11 Step B8: The Treatment area is 672 square feet and the treated flow is 980 cubic feet. Step B9: The stored flow is 420 cubic feet and the ponding depth is 0.62 feet or 7.5 inches.
Treatment Measure Design
Criteria Regions for San Mateo County
Figure 1
BMP Design Criteria Regions for San Mateo County

LEGEND
- **Criteria Region 1**: Areas above 1,400 feet MSL
- **Criteria Region 2**: Areas above 350 feet MSL
- **Criteria Region 3**
- **Criteria Region 4**
- **Criteria Region 5**
- **Criteria Region 6**
- **Criteria Region 7**
- **San Mateo County Boundary**
- **Municipal Boundary**

San Francisco Bay

Pacific Ocean

San Mateo County

California

Miles

0 2.5 5 7.5 10

N

BMP Design Criteria Regions for San Mateo County

- Daly City
- Colma
- Pacifica
- Half Moon Bay
- Brisbane
- So. San Francisco
- San Bruno
- Millbrae
- Burlingame
- Hillsborough
- San Mateo
- Foster City
- Belmont
- Redwood City
- San Carlos
- East Palo Alto
- Atherton
- Woodside
- Portola Valley
- San Bruno
- Millbrae
- Burlingame
- Hillsborough
- San Mateo
- Foster City
- Belmont
- Redwood City
- San Carlos
- East Palo Alto
- Atherton
- Woodside
- Portola Valley
- Colma
- Pacifica
- Half Moon Bay
- Daly City

San Mateo County Boundary

Municipal Boundary
Applicability of Inlet Filters, Oil/Water Separators, Hydrodynamic Separators, and Media Filters

As described in Section 5.2, beginning December 1, 2011, no underground vault systems are allowed for use, except in certain types of “Special Projects,” in which media filters may be allowed. Special Projects criteria are included in Appendix K. Three types of underground systems have been shown to have particular difficulty meeting the NPDES stormwater permit standard of removing pollutants to the maximum extent practicable (MEP). These three systems — inlet filters (also called manufactured drain inserts), oil/water separators (also called water quality inlets), and hydrodynamic separators — are described below. The Water Board staff’s August 2004 letter that describes issues associated with these treatment measures is included at the end of this Appendix. A discussion of media filters precedes the attached letter.

As described below, some of these devices can be extremely effective in removing trash and other gross solid pollutants, as well as sediment and oil. While not adequate to meet the MEP standard alone, their use may be worth considering if used as part of a treatment train.

D.1 Inlet Filters

The California Stormwater Quality Association’s (CASQA) New Development BMP Handbook describes storm drain inlet filters (which are also called manufactured drain inserts) as manufactured filters or fabric that are placed in a storm drain inlet to remove sediment and debris. In a letter dated August 5, 2004, the Water Board’s Executive Officer described its assessment of studies and literature reviews for this type of treatment measure. The letter reported that these filters are subject to clogging, have very limited ability to remove dissolved pollutants, need very frequent maintenance, and are likely to receive inadequate maintenance. The following conclusion was made regarding inlet filters:
Based on our review of these references and experience in the Bay Area, it would be very unlikely for a proposal using inlet filters as the sole treatment measures to meet the MEP standard.1

Based on the Water Board staff's statements, the municipalities do not approve proposals for the use of inlet filters as permanent, post-construction treatment measures, unless they are part of a stormwater "treatment train" approach that includes other, more effective types of stormwater treatment measures. The use of treatment trains is discussed in Section 5.1.4.

D.2 Oil/Water Separators

Oil/water separators, also called water quality inlets, are described in CASQA's New Development BMP Handbook as consisting of one or more chambers that promote sedimentation of coarse materials and separation of free oil (as opposed to emulsified or dissolved oil). The Water Board's August 5, 2004, letter described oil/water separators as originally developed for industrial uses and recognized as generally ineffective in removing the types of pollutants normally found in urban stormwater. The letter included the following summary statement regarding oil/water separators:

"With the exception of projects where oil and grease concentrations are expected to be very high, and other measures are included in a 'treatment train' approach, Board staff is unlikely to consider oil/water separators as a means of meeting the MEP standard."

As with inlet filters, based on the Water Board staff's statements, the municipalities do not approve proposals for the use of oil/water separators to treat stormwater, unless they are used to treat high concentrations of oil and grease and the stormwater receives further treatment for fine-particulates associated with pollutants.

D.3 Hydrodynamic Separators

The US Environmental Protection Agency (USEPA) has described hydrodynamic separators as "flow-through structures with a settling or separation unit to remove sediments".2 The energy from the flowing water allows sediments to settle, so no outside power source is needed.

The Contra Costa Clean Water Program conducted a literature review that found that hydrodynamic separators were substantially less effective than various landscape-based treatment measures for removing pollutants that are associated with very fine particles and are identified as pollutants of concern in the Contra Costa Countywide NPDES municipal stormwater permit. Contra Costa's technical memorandum also described local experience successfully applying a variety of landscape-based treatment measures to development projects in Contra Costa County, as well as operation and maintenance concerns and mosquito generation potential associated with hydrodynamic separators. Effective December 1, 2011, the stand-alone use of hydrodynamic separators is no longer allowed to meet stormwater treatment requirements.

Hydrodynamic separators can be very effective at removing trash and gross solids from runoff, and may be included as part of a treatment train in order to remove large solids before the stormwater is routed to a treatment measure that is more effective at removing fine particulates.

D.4 Media Filters

A technical description of media filters is provided in Section 6.11. Effective December 1, 2011, the stand-alone use of media filters to meet stormwater treatment requirements is no longer allowed, except for use in Special Projects, as described in Appendix K. While media filters have been demonstrated to remove suspended solids more effectively than manufactured treatment systems described above, concerns remain about the maintenance of these systems. Media filters have more intensive maintenance requirements than low impact development treatment measures, and, since they are located underground, tend to be “out of sight, out of mind,” often do not receive the maintenance required to function properly. When used in Special Projects, it will be important for municipal staff to conduct regular maintenance verification inspections to verify that these systems are maintained properly and operating as designed.

D.5 Water Board Staff’s Letter

A copy of the Water Board staff’s August 2004 letter is included in the following pages.
Date: August 5, 2004
File No. 1538.09 (KHL, JBO)

BASMAA Managers
c/o Geoff Brosseau
BASMAA Executive Director
1515 Clay Street,
Suite 1400
Oakland, CA 94612

Subject: Use of Storm Drain Inlet Filters and Oil/Water Separators to Meet the Requirements of NPDES Municipal Stormwater Permits

Dear BASMAA Managers:

This letter responds to your requests to clarify the Water Board’s review of an aspect of municipal stormwater permittee compliance with requirements to include treatment controls in new development and significant redevelopment projects. Please assist us in distribution of this letter to BASMAA member agencies and other interested parties.

The Board regularly receives inquiries regarding the inclusion of stormwater treatment control measures to remove pollutants from new development and redevelopment project runoff. As a state agency, the Board does not endorse specific treatment control products. Also, there is currently no State certification program that would certify the effectiveness of a particular product.

However, the Board’s role does include determining permittees’ compliance with their NPDES stormwater permits. This includes determining that municipalities have reduced the discharge of pollutants in storm water to the Maximum Extent Practicable (MEP). While not specifically defined within federal clean water law, MEP refers to implementing best management practices (BMPs) that are effective in addressing pollutants, generally accepted by the public, of reasonable cost, and technically feasible.

When reviewing compliance with permit requirements for new development and redevelopment projects, Board staff looks to see that permittees have required projects to incorporate appropriate source controls to prevent the discharge of pollutants, design measures to reduce impervious surface, and treatment controls to remove pollutants from runoff. We review whether these measures have been appropriately designed to be effective, given the existing state...
of knowledge. For example, is a vegetated swale designed within parameters specified in existing literature as being effective? Such parameters include minimum residence times, maximum flow depths and velocities, limits on swale longitudinal and side slopes, inclusion of a subdrain if in very tight soils, and similar considerations.

Oil/Water Separators
Another example, vault-based oil-water separators, also known as water quality inlets, was originally designed for industrial use. These have been recognized to be generally ineffective at removing pollutants at concentrations seen in urban stormwater runoff, because removal rates are low and those pollutants that are removed are often flushed out by subsequent storms, especially when a separator is not frequently maintained. With the exception of projects where oil and grease concentrations are expected to be very high, and other controls are included in a “treatment train” approach, Board staff is unlikely to consider oil/water separators as a means of meeting the MEP standard.

Storm Drain Inlet Filters
Storm drain inlet filters, also known as drain inlet inserts, also have been shown to have limited effectiveness in removing pollutants from urban stormwater runoff, due to the nature of their design. Inlet filters are typically either bags or trays of filter media that are designed to catch and treat runoff as it enters the storm drain. They are manufactured stormwater treatment controls, and are typically popular because they have a low capital cost relative to other controls and can be placed into a traditional engineered storm drain design without altering that design.

In determining whether drain inlet filters meet the MEP standard, we reviewed the existing state of knowledge. Board staff’s assessment of studies and literature reviews for this class of controls has found the following:

- Filters are subject to clogging and/or blinding by sediment, trash, and vegetation, resulting in runoff bypassing the filter and/or flooding;
- Maintaining filter performance requires very frequent maintenance (as often as during and after every storm). Manufacturers in practice underestimate the maintenance requirements for this class of devices. In practice, maintenance is not completed at an effective frequency, particularly to avoid bypass of the filter element clogged with debris;
- Inlet filters, by virtue of their location below a storm drain grate, are out of sight. This can lead to reduced maintenance resulting from the filters being out-of-sight, and thus out-of-mind;
- Filter performance may decay rapidly over a time frame that is significantly shorter than typically recommended replacement or maintenance intervals;
- Filters appear to have very limited ability to remove dissolved pollutants, smaller particulates, and emulsified oil and grease, and may have a limited ability to remove
oil and grease as it is found in urban runoff. The filter element in inlet filters is small and easily bypassed if fouled to prevent flooding.

The limited space within a storm drain inlet appears to preclude highly effective treatment. To the extent that treatment is accomplished, it appears that these controls require an intensive maintenance regime—one that is expensive and which, based on our experience in the Bay Area, is ultimately not completed once the controls have been installed.

A list of references reviewed is attached and includes reports prepared by Bay Area municipal stormwater programs that found the effectiveness of existing inlet filter products to be very limited. Based on our review of these references and experience in the Bay Area, it would be very unlikely for a proposal using inlet filters as the sole treatment measures to meet the MEP standard.

Fortunately, there are a variety of effective controls available to project proponents and designers as alternatives to inlet inserts. These include a range of landscape-based controls (e.g., vegetated swales, bioretention areas, planter/tree boxes, ponds, and stormwater wetlands) and a series of manufactured controls (e.g., vault-based hydrodynamic separators, vault-based media filters, and other solids removal devices). With few exceptions, these controls appear to function more reliably to remove pollutants, and thus would better represent “MEP.”

Each type of BMP should be used in situations for which it is appropriate. For example, the City of Oakland is working to limit trash discharged into Lake Merritt. For that project, controls that primarily remove trash may be most appropriate. For most new development projects, however, BMPs that address the broad spectrum of urban runoff pollutants, from trash to fine particulates and soluble pollutants, are needed.

We recognize that inlet filter products with substantially improved performance may be developed in the future. Also, certification programs like Washington State’s “Evaluation of Emerging Stormwater Treatment Technologies,” which reviews technologies to determine whether they are at least as good as existing non-proprietary measures, may establish viable treatment measures. As with any aspect of the NPDES stormwater program, we anticipate that the municipal stormwater programs and the Board will continue to review information as it is developed so as to best determine what constitutes MEP, and to help ensure the reasonable cost in implementation of effective BMPs.
If you have any questions or further comments, please contact Dale Bowyer at (510) 622-2323 or via email to dcb@rb2.swrcb.ca.gov, or Keith Lichten via email to khl@rb2.swrcb.ca.gov, or at (510) 622-2380.

Sincerely,

--original signed by--

Bruce H. Wolfe
Executive Officer

Attachment: References Reviewed
ATTACHMENT: REFERENCES REVIEWED

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald, Jonathan / Kristar</td>
<td>Letter & Attachments</td>
<td>September 19, 2003</td>
<td></td>
</tr>
<tr>
<td>Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)</td>
<td>Application of Water-Quality Engineering Fundamentals to the Assessment of Stormwater Treatment Devices</td>
<td>August 28, 2002</td>
<td></td>
</tr>
<tr>
<td>SCVURPPP</td>
<td>An Update of the 1999 Catch Basin Retrofit Feasibility Study Technical Memorandum</td>
<td>June 26, 2002</td>
<td></td>
</tr>
<tr>
<td>SCVURPPP</td>
<td>Catch Basin Retrofit Feasibility Study Technical Memorandum</td>
<td>July 12, 1999</td>
<td></td>
</tr>
<tr>
<td>Woodward-Clyde for SCVURPPP</td>
<td>Parking Lot BMP Manual</td>
<td>June 11, 1996</td>
<td></td>
</tr>
<tr>
<td>URS Greiner Woodward Clyde (now URS) / Alameda County Urban Runoff Clean Water Program (now ACCWP)</td>
<td>Stormwater Inlet Insert Devices Literature Review</td>
<td>April 2, 1999</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Othmer, Friedman, Borroum, and Currier / Caltrans</td>
<td>Performance Evaluation of Structural BMPs: Drain Inlet Inserts (Fossil Filter and StreamGuard) and Oil/Water Separator</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Woodward-Clyde Consultants / Alameda County Urban Runoff Clean Water Program</td>
<td>Street Sweeping/Storm Inlet Modification Literature Review</td>
<td>December 21, 1994</td>
<td></td>
</tr>
<tr>
<td>Interagency Catch Basin Insert Committee</td>
<td>Evaluation of Commercially-Available Catch Basin Inserts for the Treatment of Stormwater Runoff from Developed Sites</td>
<td>October 1995</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Miller Jennings, Senior Staff Counsel, Office of Chief Counsel, State Water Resources Control Board</td>
<td>Memorandum on Maximum Extent Practicable</td>
<td>February 11, 1993</td>
<td></td>
</tr>
</tbody>
</table>
Infiltration Guidelines

As a stormwater management method, infiltration means retaining or detaining water within soils to reduce runoff. Infiltration can be a cost-effective method to manage stormwater – if the conditions on your site allow. These infiltration guidelines identify categories of stormwater infiltration methods, and describe factors that affect the feasibility of their use.

E.1 Stormwater Controls that Promote Infiltration

A wide-range of site-design measures and stormwater treatment measures allow stormwater infiltration and can be categorized as described below and illustrated in Figure E-1.

A. Site design measures – such as clustering development or otherwise laying out the site to reduce impervious area, routing drainage from building roofs to landscaped areas, and using pervious pavement.

B. Indirect infiltration methods, which allow stormwater runoff to percolate into surface soils. The infiltrated water may either percolate down into subsurface soils and eventually reach groundwater, or it may be underdrained into subsurface pipes. Examples of indirect infiltration methods include bioretention areas and vegetated buffer strips.

C. Direct infiltration methods, which are designed to bypass surface soils and transmit runoff directly to subsurface soils and eventually groundwater. These types of devices must be located and designed to limit the potential for groundwater contamination. Examples of direct infiltration methods include infiltration trenches, infiltration basins, and dry wells.
Table E-1 describes common stormwater controls and groups them according to whether they meet the above definitions of categories A, B and C. References to the applicable section of Chapter 4 or 6 are given for stormwater controls that have specific technical guidance included in this handbook.

![Figure E-1: Stormwater Infiltration Methods (Source: Contra Costa County Clean Water Program, 2005)](source)

<table>
<thead>
<tr>
<th>Stormwater Control</th>
<th>Description</th>
<th>Guidance in Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A: Site Design Measures (Example: Permeable Pavement)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnected Downspouts</td>
<td>Instead of connecting directly to storm drains, roof runoff is directed away from the building to nearby landscaped areas.</td>
<td>N/A</td>
</tr>
<tr>
<td>Green Roofs</td>
<td>May be “extensive” with a 3-7 inch lightweight substrate and a few types of low-profile plants; or may be “intensive” with a thicker substrate, more varied plantings, and a more garden-like appearance.</td>
<td>4.6</td>
</tr>
<tr>
<td>Pervious Pavements</td>
<td>Special mixes of concrete and asphalt. Require a base course of crushed aggregate and installation by experienced crews.</td>
<td>4.7</td>
</tr>
<tr>
<td>Site Grading</td>
<td>Using gentler slopes and concave areas to reduce runoff and encourage infiltration.</td>
<td>N/A</td>
</tr>
<tr>
<td>Category B: Indirect Infiltration (Example: Vegetated Swale)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category C: Direct Infiltration (Example: Infiltration Trench)</td>
<td>Water from Category A and B measures percolates through soil, or measures may be underdrained.</td>
<td></td>
</tr>
</tbody>
</table>
Table E-1
Infiltration Methods in Commonly-Used Stormwater Controls

<table>
<thead>
<tr>
<th>Stormwater Control</th>
<th>Description</th>
<th>Guidance in Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A: Site Design Measures (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Layout Practices</td>
<td>Examples: Use compact, multi-story buildings to reduce building footprint, cluster buildings to reduce street length and protect sensitive areas, design narrow streets, use sidewalks on one side of street.</td>
<td>N/A</td>
</tr>
<tr>
<td>Turf Block</td>
<td>A load-bearing, durable surface of impermeable blocks separated by spaces and joints in which soil is planted with turf.</td>
<td>4.8</td>
</tr>
<tr>
<td>Unit Pavers</td>
<td>Traditional bricks or other pavers on sand or fine crushed aggregate.</td>
<td>4.8</td>
</tr>
<tr>
<td>Category B: Indirect Infiltration (“Infiltration Measures”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioretention Area</td>
<td>Briefly ponds stormwater on the surface of a shallow depression and allows it to percolate through permeable soil. Underdrain is typically required, but is elevated to maximize infiltration to underlying soils, where conditions allow.</td>
<td>6.1</td>
</tr>
<tr>
<td>Vegetated Buffer Strip</td>
<td>Sloped area with low-growing vegetation that treats runoff by slowing the velocity so sediment and associated pollutants can settle, along with some infiltration.</td>
<td>6.4</td>
</tr>
<tr>
<td>Pervious Pavements</td>
<td>Special mixes of concrete and asphalt. Require a base course of crushed aggregate and installation by experienced crews.</td>
<td>6.7</td>
</tr>
<tr>
<td>Turf Block</td>
<td>A load-bearing, durable surface of impermeable blocks separated by spaces and joints in which soil is planted with turf.</td>
<td>6.8</td>
</tr>
<tr>
<td>Unit Pavers</td>
<td>Traditional bricks or other pavers on sand or fine crushed aggregate.</td>
<td>6.8</td>
</tr>
<tr>
<td>Cisterns</td>
<td>Storage vessels, sometimes with a manually operated valve, provide infiltration if runoff is stored for post-storm discharge to landscaping.</td>
<td>6.10</td>
</tr>
<tr>
<td>Category C: Direct Infiltration (“Infiltration Devices”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltration Trench</td>
<td>A trench with no outlet, filled with rock or open graded aggregate.</td>
<td>6.7</td>
</tr>
<tr>
<td>Infiltration Basin</td>
<td>An excavation that exposes relatively permeable soils and impounds water for rapid infiltration.</td>
<td>N/A</td>
</tr>
<tr>
<td>Dry Well</td>
<td>Small, deep hole filled with open graded aggregate. Sides may be lined with filter fabric or may be structural (i.e., an open bottom box sunk below grade). Typically receives roof runoff.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

E.2 Factors Affecting Feasibility of Infiltration

The Harvest and Use, Infiltration and Evapotranspiration Feasibility/Infeasibility Criteria Report (Feasibility Report) submitted to the Regional Water Board by BASMAA on April 29, 2011, identified the factors listed below that affect the feasibility of infiltration. These factors are grouped according to whether they apply to both indirect and direct infiltration, or whether they apply only to direct infiltration.

As indicated in Table E-1, “infiltration measures” are stormwater treatment measures that provide indirect infiltration. Examples of infiltration measures include bioretention areas, vegetated buffer strips, and pervious pavement.

“Infiltration devices” are stormwater treatment measures that provide direct infiltration. The MRP defines “infiltration device” as any structure that is deeper than wide and designed to
infiltrate stormwater into the subsurface and, as designed, bypass the natural groundwater protection afforded by surface soil. The MRP lists the following as examples of infiltration devices: dry wells, injection wells, infiltration trenches, and French drains. Infiltration measures and infiltration devices are referred to collectively as “infiltration facilities.”

E.2.1 Factors Affecting Feasibility of Both Indirect and Direct Infiltration

The following factors are used to determine the feasibility of any infiltration facility, whether it provides indirect infiltration (infiltration measures) or direct infiltration (infiltration devices):

- The permeability of the underlying soil;
- Development sites where pollutant mobilization in the soil or groundwater is a documented concern;
- Locations with potential geotechnical hazards;
- Conflicts with the location of existing or proposed underground utilities or easements.

E.2.2 Factors Affecting Feasibility of Direct Infiltration

Factors that specifically preclude the use of direct infiltration (infiltration devices) include the following:

- Locations where policies of local water districts or other applicable agencies preclude infiltration.
- Locations within 100 feet of a groundwater well used for drinking water;
- Appropriate pollution prevention and source control measures, including a minimum of two feet of suitable soil to achieve a maximum of 5 inches/hour infiltration rate;
- Adequate maintenance is provided to maximize pollutant removal capabilities;
- Vertical distance from the base of any infiltration device to the seasonal high groundwater mark is at least 10 feet (or greater if the site has highly porous soils or there are other concerns for groundwater protection);
- Unless stormwater is first treated by a method other than infiltration, infiltration devices are not approved as a treatment measure for stormwater runoff from areas of industrial areas, areas of high vehicular traffic or land uses that pose a high threat to water quality;
- Infiltration devices are not placed in the vicinity of known contaminated sites; and
- Infiltration devices are located a minimum of 100 feet horizontally away from any known water supply wells, septic systems, and underground storage tanks (or greater if the site has highly porous soils or there are other concerns for groundwater protection).

E.3 Dealing with Common Site Constraints

The following tips are intended to help manage constraints to infiltration that are common in San Mateo County.
Where infiltration of the C.3.d amount of runoff is infeasible, bioinfiltration or bioretention areas may be used if drainage is sufficient or underdrains are provided. The design should maximize infiltration to the underlying soil, as shown in Section 6.1. Some indirect infiltration to groundwater will occur and will enhance the effectiveness of these treatment measures. Site design measures such as disconnected downspouts and pervious paving may be used if soils are amended and positively drained.

Infiltration is generally infeasible on steep or unstable slopes. Site design measures that limit impervious area may be appropriate if approved by a geotechnical engineer. Consider detaining runoff in green roofs and cisterns, or using stormwater treatment measures that do not infiltrate water into the natural ground, such as flow-through planters or tree well filters.

Green roofs, cisterns, flow-through planters, tree well filters, and other stormwater controls that are isolated from underlying soils are also appropriate for areas with high groundwater and/or groundwater contamination.

A variety of site design measures can often be used even on sites with the constraints described above, including (but not limited to) amended soils, structural soils, grading landscaping to a concave form, designing taller buildings with smaller footprints, and concentrating development on less sensitive portions of the site.

E.4 Infiltration Devices and Class V Injection Well Requirements

In order to protect underground sources of drinking water, the USEPA regulates some infiltration devices as Class V wells under its Underground Injection Control (UIC) Program. A Class V injection well is defined as “… any bored, drilled, or driven shaft, or dug hole that is deeper than its widest surface dimension, or an improved sinkhole, or a subsurface fluid distribution system.” Infiltration trenches are typically not considered Class V injection wells because they are longer than they are wide. The USEPA’s regulations state that stormwater drainage wells are “authorized by rule” (40 CFR 144), which means they do not require a permit if they do not endanger underground sources of drinking water, and they comply with federal UIC requirements. For more information, see the USEPA’s fact sheet, “When Are Storm Water Discharges Regulated as Class V Wells?” is included at the end of this appendix.

If your project includes one or more infiltration devices that are regulated as Class V injection wells, you will need to submit basic inventory information about the device(s) to the regional office of the USEPA. Instructions for submitting this information are available on the USEPA Region 9 website at http://www.epa.gov/region09/water/groundwater/uic-classv.html. Project sponsors are responsible for constructing, operating and closing the drainage well in a manner that does not risk contaminating underground sources of drinking water. The USEPA may place additional requirements on the infiltration device.

Project sponsors should contact the appropriate USEPA staff, identified on the Internet link provided above, to learn what inventory information should be submitted, and when the submittal should be made.
WHEN ARE STORM WATER DISCHARGES REGULATED AS CLASS V WELLS?

Audience: This fact sheet is for storm water managers that implement the National Pollutant Discharge Elimination System (NPDES) program.

Purpose: To increase awareness that storm water drainage wells are regulated as Class V injection wells and to ensure that NPDES regulators understand the minimum federal requirements under the Safe Drinking Water Act (SDWA) for the Underground Injection Control (UIC) program.

ARE STORM WATER DRAINAGE WELLS REGULATED BY THE UIC PROGRAM?
Yes. These wells are regulated by EPA and primacy states through the UIC program as Class V injection wells with requirements to protect underground sources of drinking water (USDWs). A USDW is defined as an aquifer that contains less than 10,000 mg/L total dissolved solids and is capable of supplying water to a public drinking water system.

Class V storm water drainage wells are typically shallow disposal wells designed to place rain water or melted snow below the land surface. By definition, a Class V injection well is any bored, drilled, or driven shaft, or dug hole that is deeper than its widest surface dimension, or an improved sinkhole, or a subsurface fluid distribution system.

WHY ARE STORM WATER DRAINAGE WELLS A CONCERN?
State and federal UIC program representatives are concerned that there may be a dramatic increase in the use of Class V wells as an NPDES Best Management Practice (BMP) to dispose of storm water. Infiltration through storm water drainage wells has the potential to adversely impact USDWs. The runoff that enters storm water drainage wells may be contaminated with sediments, nutrients, metals, salts, fertilizers, pesticides, and microorganisms.

WHAT ARE SOME EXAMPLES OF STORM WATER DRAINAGE WELLS?
The broad definition of Class V wells covers a variety of storm water injection well configurations, including:

- Dry wells
- Bored wells
- Infiltration galleries

The underground injection well definition applies to any subsurface drainfields that release fluids underground. These can include French drains, tile drains, infiltration sumps, and percolation areas with vertical drainage. Improved sinkholes designed for storm water management are also considered Class V storm water drainage wells. These wells are natural karst depressions or open fractures that have been intentionally altered to accept and drain storm water runoff. The pictures on the back page illustrate an example of a Class V injection well that is subject to UIC requirements.

WHAT INFILTRATION SYSTEMS ARE NOT STORM WATER DRAINAGE WELLS?
Two types of infiltration systems are not considered storm water drainage wells:

- Infiltration trenches are excavated trenches filled with stone (no piping or drain tile) to create an underground reservoir. They are usually wider than they are deep.

- Surface impoundments or ditches are excavated ponds, lagoons, and ditches (lined or unlined, without piping or drain tile) with an opened surface. They are used to hold storm water. These devices would be considered Class V injection wells, however, if they include subsurface fluid distribution systems.
Storm water drainage well designs can be as varied as the engineers who design them. A fluid distribution system that discharges underground through piping is typically the defining characteristic. If you are unsure about the classification of your infiltration system, contact your UIC program representative for clarification.

HOW ARE STORM WATER DRAINAGE WELLS REGULATED?

Under the minimum federal requirements, storm water drainage wells are “authorized by rule” (40 CFR 144). This means that storm water drainage wells do not require a permit if they do not endanger USDWs and they comply with federal UIC program requirements. The prohibition on endangerment means the introduction of any storm water contaminant must not result in a violation of drinking water standards or otherwise endanger human health. Primacy states may have more stringent requirements.

Federal program requirements include:

- Submitting basic inventory information about the storm water drainage wells to the state or EPA. (Contact your UIC program to learn what inventory information must be submitted and when.) In some cases, the information may be required prior to constructing the well.

- Constructing, operating, and closing the drainage well in a manner that does not endanger USDWs.

- Meeting any additional prohibitions or requirements (including permitting or closure requirements) specified by a primacy state or EPA region.

HOW CAN I HELP PREVENT NEGATIVE IMPACTS FROM STORM WATER DRAINAGE WELLS?

As an NPDES storm water manager, you can help to ensure that current and future storm water systems using Class V wells meet regulatory requirements under the UIC program. You can also help identify storm water drainage systems that may affect USDWs, and recommend BMPs to protect USDWs. BMPs for storm water drainage wells may address well siting, design, and operation, as well as education and outreach to prevent misuse.

FOR MORE INFORMATION...

EPA's Office of Ground Water and Drinking Water Web Site: http://www.epa.gov/safewater

UIC Program Contacts:
http://www.epa.gov/safewater/uic/primacy.html

EPA's NPDES Web Site: http://www.epa.gov/NPDES/Stormwater

Safe Drinking Water Hotline: 1-800-426-4791

Office of Ground Water and Drinking Water (4606M)

EPA 816-F-03-001

June 2003

Recycled/Recyclable * Printed with Vegetable Oil Based Inks on 100% Postconsumer, Process Chlorine Free Recycled Paper
Mosquito Control Guidelines

This appendix presents guidance from the Countywide Program’s Vector Control Plan for designing and maintaining stormwater treatment measures to control mosquitoes. Project sponsors are responsible for incorporating in their treatment measure designs and maintenance plans the design and maintenance guidance, presented below. Project plans that include stormwater treatment measures (and their maintenance plans) will be routed by the municipality to the San Mateo County Mosquito Abatement District for review. Project applicants may wish to consult with Mosquito Abatement District staff for guidance.

F.1 Design Guidance for Mosquito Control

The following design considerations were adapted from guidance prepared by the California Department of Health Services,1 and are provided for project sponsors to use when selecting, designing, and constructing stormwater treatment measures.

General Design Principles

- Preserve natural drainage. Use site design measures to reduce the amount of stormwater runoff and provide for natural on-site runoff control. This will reduce the number of treatment measures required.
- In flat areas, where standing water may occur for more than 72 hours under existing conditions, consider grading to make minor increases in slope to improve surface drainage and prevent standing water.
- Select stormwater management measures based on site-specific conditions. Designs that take into account site conditions tend to improve drainage and limit the occurrence of stagnant water.

- Attend to ponds that temporarily impound water. Careful consideration should be made before intermittently flooded stormwater treatment measures are selected for handling stormwater. Facilities that pond water for an extended period (e.g., extended detention basins and constructed wetlands) must be designed to drain water completely within 72 hours of a storm event. Avoid placement of extended detention basins and underground structures in areas where they are likely to remain wet (i.e., high water tables). The principal outlet should have positive drainage.

- When a new stormwater treatment measure is being installed, a selection of a type that does not require a wet pond or other permanent pool of water should be considered.

- Properly design storm drain systems. The sheltered environment inside storm drains can promote mosquito breeding. Pipes should be designed and constructed for a rate of flow that flushes the system of sediment and prevents water backing up in the pipe. Storm drains should be constructed so that the invert out is at the same elevation as the interior bottom to prevent standing water.

- Use grouted rock energy dissipaters instead of loose rock.

- In practice, many stormwater treatment measures, not only wet ponds, hold water for over 72 hours, sometimes due to their outdated designs, and possibly due to improper construction and maintenance. To ensure that public health and safety are maintained, the following suggestions should be considered for any structure that holds water for over 72 hours:
 - Select or design an alternative (or modified) device that provides adequate pollutant removal and complete drainage in 72 hours. This is the most reliable and cost-effective choice.
 - Contact state or local public health or vector control agencies to determine whether local mosquito species and local factors may preclude rapid mosquito emergence, thus safely allowing water residence times to exceed 72 hours. In some areas this may require a detailed study that should be funded by the soliciting party.
 - Provide adequate funds necessary to support routine mosquito monitoring and control and maintenance.
 - Per the Vector Control Plan, project plans that include stormwater treatment measures (and their maintenance plans), will be routed to the San Mateo County Mosquito Abatement District for review. Project applicants may wish to consult with Mosquito Abatement District staff for guidance.

General Access Requirements for Mosquito Control

The following requirements are necessary to provide mosquito abatement personnel access to treatment measures for inspection and abatement activities.

- Design stormwater treatment devices to be easily and safely accessible without the need for special requirements (e.g., OSHA requirements for “confined space”).

- If utilizing covers, include in the design spring-loaded or light-weight access hatches that can be opened easily for inspection.
- Provide all-weather road access (with provisions for turning a full-size work vehicle) along at least one side of large above-ground structures that are less than 25 feet wide. For structures that have shoreline-to-shoreline distances in excess of 25 feet, a perimeter road is required for access to all sides.

Dry System Design Principles for Mosquito Control

- Design structures so they do not hold standing water for more than 72 hours.
- Incorporate features that prevent or reduce the possibility of clogged discharge orifices (e.g., debris screens). The use of weep holes is not recommended due to rapid clogging.
- Use the hydraulic grade line of the site to select a treatment measure that allows water to flow by gravity through the structure. Pumps are not recommended because they are subject to failure and often require sumps that hold water.
- Design distribution piping and containment basins with adequate slopes to drain fully and prevent standing water. The design slope should take into consideration buildup of sediment between maintenance periods. Compaction during grading may also be needed to avoid slumping and settling.
- Avoid the use of loose riprap or concrete depressions that may hold standing water.
- Avoid barriers, diversions, or flow spreaders that may retain standing water.
- Use mosquito net to cover sand media filter pump sumps.
- Use aluminum “smoke proof” covers for any vault sedimentation basins.
- Properly design storm drain systems. The sheltered environment inside storm drains can promote mosquito breeding. Pipes should be designed and constructed for a rate of flow that flushes the system of sediment and prevents water backing up in the pipe.

Sumps, Wet Vaults, and Catch Basin Design Principles for Mosquito Control

- Completely seal structures that retain water permanently or longer than 72 hours to prevent entry of adult mosquitoes. Adult female mosquitoes may penetrate openings as small as 1/16 inch (2 mm) to gain access to water for egg laying. Screening (24 mesh screens) can exclude mosquitoes, but it is subject to damage and is not a method of choice.
- If covers are used, they should be tight fitting with maximum allowable gaps or holes of 1/16 inch (2 mm) to exclude entry of adult mosquitoes. Gaskets are a more effective barrier when used properly.
- Any covers or openings to enclosed areas where stagnant water may pool must be large enough (2 feet by 3 feet) to permit access by vector control personnel for surveillance and, if necessary, abatement activities.
- If the sump, vault, or basin is sealed against mosquitoes, with the exception of the inlet and outlet, use a design that will submerge the inlet and outlet completely to
reduce the available surface area of water for mosquito egg-laying (female mosquitoes can fly through pipes).

- Creative use of flapper or pinch valves, collapsible tubes and “brush curtains” may be effective for mosquito exclusion in certain designs.
- Design structures with the appropriate pumping, piping, valves, or other necessary equipment to allow for easy dewatering of the unit, if necessary.

Wet Ponds And Wetlands Design Principles for Mosquito Control

- If a wet pond or constructed, modified, or restored wetland must be built, appropriate and adequate funds must be allocated to support long-term site maintenance as well as routine monitoring and management of mosquitoes by a qualified agency.
- Before approving a wet pond or wetland system, evaluate the long-term costs and jurisdictional and maintenance issues associated with the potential establishment of special-status species. If any doubt exists, consider alternate stormwater treatment measures.
- Long-term management of mosquitoes in wet ponds and wetlands should integrate biological control, vegetation management and other physical practices, and chemical control as appropriate.
- Provide for regular inspection of sites for detection of developing mosquito populations. Local factors may influence the overall effectiveness of certain approaches for mosquito reduction.
- Wet ponds and wetlands should maintain water quality sufficient to support surface-feeding fish such as mosquito fish (*Gambusia affinis*), which feed on immature mosquitoes and can aid significantly in mosquito control.
- If large predatory fish are present (e.g., perch and bass), mosquito fish populations may be negatively impacted or eradicated. In this case, careful vegetation management remains the only nonchemical mosquito control measure.
- Where mosquito fish are not allowed, careful vegetation management remains the only nonchemical mosquito control measure. Other predators such as dragonflies, diving beetles, birds, and bats feed on mosquitoes when available, but their effects are generally insufficient to preclude chemical treatment.
- Perform routine maintenance to reduce emergent plant densities. Emergent vegetation provides mosquito larvae with refuge from predators, protection from surface disturbances, and increased nutrient availability while interfering with monitoring and control efforts.
- Whenever possible, maintain wet ponds and wetlands at depths in excess of 4 feet to limit the spread of invasive emergent vegetation such as cattails (*Typha* spp.). Deep, open areas of exposed water are typically unsuitable for mosquito immatures due to surface disturbances and predation. Deep zones also provide refuge areas for fish and beneficial macroinvertebrates should the densely vegetated emergent zones be drained.
• Build shoreline perimeters as steep and uniform as practicable to discourage dense plant growth.

• Use concrete or liners in shallow areas to discourage unwanted plant growth where vegetation is unnecessary.

• Eliminate floating vegetation conducive to mosquito production, such as water hyacinth (*Eichhornia* spp.), duckweed (*Lemna* and *Spirodela* spp.), and filamentous algal mats.

• Make shorelines accessible to maintenance and vector control crews for periodic maintenance, control, and removal of emergent vegetation, as well as for routine mosquito monitoring and abatement procedures, if necessary.

• Design and obtain necessary approvals for all wet ponds and wetlands to allow for complete draining when needed.

• Improve designs of permanent pools. Minimize shallow depths and increase circulation in ponds. Permanently flooded systems should be stocked with native *Gambusia* minnows to foster biological predation on mosquito larvae.

• Do not use stormwater structures to meet endangered species mitigation requirements. Aquatic habitat for endangered species should not be created near areas populated by humans.

F.2 Maintenance Guidance for Mosquito Control

Routine and timely maintenance is critical for suppressing mosquito breeding as well as for meeting local water quality goals. If maintenance is neglected or inappropriate for a given site, even structures designed to be the least “mosquito friendly” may become significant breeding sites. Although general principles of vector control are described here, maintenance guidelines for individual treatment measures are often site-specific.

The maintenance principles given below are intended to reduce the mosquito population. These principles should be incorporated, as appropriate, in maintenance plans developed for stormwater treatment control measures and in the ongoing maintenance and inspection of treatment measures.

General Maintenance Principles

• Minimize stagnant water (i.e., maintain constant exchange of water in systems).

• Minimize surface area (i.e., deeper water habitat is preferable).

• With the exception of certain treatment measures designed to hold permanent water, all treatment measures should drain completely within 72 hours to effectively suppress vector production.

• Build perimeter access roads or trails to access wet ponds. Without proper access avenues, the “barbed wire” effect can result where sharp vines prevent vector monitoring and abatement.
- Site inspections of newly constructed projects should be routinely conducted by municipalities to avoid the inadvertent approval of improperly constructed systems.

- Any circumstances that restrict the flow of water from a system as designed should be corrected. Debris or silt build-up obstructing an outfall structure should be removed. Under drains and filtration media should be inspected periodically and cleaned out or replaced as needed.

- Conduct maintenance activities regularly, in accordance with a municipality-approved maintenance plan.

Vegetation Management Maintenance Principles

- Conduct annual vegetative management, such as removing weeds and restricting growth of aquatic vegetation to the periphery of wet ponds.

- Remove grass cuttings, trash and other debris, especially at outlet structures

- Avoid producing ruts when mowing (water may pool in ruts).

Dry System Maintenance Principles for Mosquito Control

- Extended detention basins are usually designed to detain water for periods less than 72 hours. If they detain water for longer than five days, they are poorly maintained.

- If a detention basin has been installed at an inappropriate location (e.g., on a site where the water table is too close to the surface), if elimination of the system isn’t possible then mosquitoes must be controlled with larvicides. The larvicide operation, in order to be effective, must be supported by a quality inspection program.

Underground Structure Maintenance Principles for Mosquito Control

- Prevent mosquito access to underground systems that may have standing water (i.e., seal openings that are 1/16-inch in diameter or greater).

- Provide SMCMAD access to underground systems that may have standing water.

Infiltration and Filtration Device Maintenance Principles for Mosquito Control

- Infiltration trenches and sand filter structures should not hold water for longer than 24 hours. If they retain water for longer than 48 hours, they are poorly maintained.
Operation & Maintenance Document Templates

Example templates are provided to assist project applicants in preparing the following documents, which municipalities may require as exhibits to a stormwater treatment measure maintenance agreement:

- Standard Treatment Measure O&M Report Form
- How to Use the Maintenance Plan Templates
- Maintenance Plan for Bioretention Area (includes bioinfiltration area)
- Maintenance Plan for Flow-through Planter
- Maintenance Plan for Tree Well Filter
- Maintenance Plan for Vegetated Buffer Strip
- Maintenance Plan for Infiltration Trench
- Maintenance Plan for Extended Detention Basin
- Maintenance Plan for Media Filter

Requirements vary from one municipality to the next. Contact the local jurisdiction to obtain electronic files for use in preparing these documents, and to obtain information on municipality-specific requirements.
Stormwater Treatment Measure Operation and Maintenance
Inspection Report to the [[== Insert Name of Municipality==]], California

This report and attached Inspection and Maintenance Checklists document the inspection and maintenance conducted for the identified stormwater treatment measure(s) subject to the Maintenance Agreement between the City and the property owner during the annual reporting period indicated below.

I. Property Information:
Property Address or APN: ___
Property Owner: __

II. Contact Information:
Name of person to contact regarding this report: __________________________
Phone number of contact person: ___________ Email: _______________________
Address to which correspondence regarding this report should be directed:

III. Reporting Period:
This report, with the attached completed inspection checklists, documents the inspections and maintenance of the identified treatment measures during the time period from ______ to ________.

IV. Stormwater Treatment Measure Information:
The following stormwater treatment measures (identified treatment measures) are located on the property identified above and are subject to the Maintenance Agreement:

<table>
<thead>
<tr>
<th>Identifying Number of Treatment Measure</th>
<th>Type of Treatment Measure</th>
<th>Location of Treatment Measure on the Property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 1
O&M Inspection Report
V. **Summary of Inspections and Maintenance:**

Summarize the following information using the attached Inspection and Maintenance Checklists:

<table>
<thead>
<tr>
<th>Identifying Number of Treatment Measure</th>
<th>Date of Inspection</th>
<th>Operation and Maintenance Activities Performed and Date(s) Conducted</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI. **Sediment Removal:**

Total amount of accumulated sediment removed from the stormwater treatment measure(s) during the reporting period: __________ cubic yards.

How was sediment disposed?

- [] landfill
- [] other location on-site as described in and allowed by the maintenance plan
- [] other, explain ________________
VII. Inspector Information:
The inspections documented in the attached Inspection and Maintenance Checklists were conducted by the following inspector(s):

<table>
<thead>
<tr>
<th>Inspector Name and Title</th>
<th>Inspector’s Employer and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VIII. Certification:
I hereby certify, under penalty of perjury, that the information presented in this report and attachments is true and complete:

___ ____________
Signature of Property Owner or Other Responsible Party Date

Type or Print Name

Company Name

Address

Phone number: ___________________ Email: ___________________
Bioretention Area\(^1\) Maintenance Plan for

[[== Insert Project Name ==]]

[[== Insert Date ==]]

Project Address and Cross Streets

__

Assessor’s Parcel No.: ____________________

Property Owner: _________________________

Phone No.: ______________________________

Designated Contact: ______________________

Phone No.: ______________________________

Mailing Address: _________________________

Bioretention areas function as soil and plant-based filtration devices that remove pollutants through a variety of physical, biological, and chemical treatment processes. These facilities normally consist of a grass buffer strip, sand bed, ponding area, organic layer or mulch layer, planting soil, and plants.

The property contains [[== insert number ==]] bioretention area(s), located as described below and as shown in the attached site plan\(^2\).

- Bioretention Area No. 1 is located at [[== describe location ==]].
- [[== Add descriptions of other bioretention areas, if applicable. ==]]

I. Routine Maintenance Activities

The principal maintenance objective is to prevent sediment buildup and clogging, which reduces pollutant removal efficiency and may lead to bioretention area failure. Routine maintenance activities, and the frequency at which they will be conducted, are shown in Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove obstructions, debris and trash from bioretention area and dispose of properly.</td>
<td>Monthly, or as needed after storm events</td>
</tr>
<tr>
<td>2</td>
<td>Inspect bioretention area to ensure that it drains between storms and within five days after rainfall.</td>
<td>Monthly, or as needed after storm events</td>
</tr>
<tr>
<td>3</td>
<td>Inspect inlets for channels, soil exposure or other evidence of erosion. Clear obstructions and remove sediment.</td>
<td>Monthly, or as needed after storm events</td>
</tr>
<tr>
<td>4</td>
<td>Remove and replace all dead and diseased vegetation.</td>
<td>Twice a year</td>
</tr>
<tr>
<td>5</td>
<td>Maintain vegetation and the irrigation system. Prune and weed to keep bioretention area neat and orderly in appearance.</td>
<td>Before wet season begins, or as needed</td>
</tr>
</tbody>
</table>

\(^1\) Bioretention areas include linear treatment measures designed to filter water through biotreatment soils. A bioretention area that has no waterproof liner beneath it and has a raised underdrain in the underlying rock layer to promote infiltration, as shown in Section 6.1 of the C.3 Technical Guidance, may also be called a “bioinfiltration area”.

\(^2\) Attached site plan must match the site plan exhibit to Maintenance Agreement.
Table 1

Routine Maintenance Activities for Bioretention Areas

<table>
<thead>
<tr>
<th></th>
<th>Routine Maintenance Activities for Bioretention Areas</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Check that mulch is at appropriate depth (3 inches per soil specifications) and replenish as necessary before wet season begins.</td>
<td>Monthly</td>
</tr>
<tr>
<td>7</td>
<td>Inspect bioretention area using the attached inspection checklist.</td>
<td>Monthly, or after large storm events, and after removal of accumulated debris or material</td>
</tr>
</tbody>
</table>

II. Prohibitions

The use of pesticides and quick release fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed:

1. Employ non-chemical controls (biological, physical and cultural controls) before using chemicals to treat a pest problem.
2. Prune plants properly and at the appropriate time of year.
3. Provide adequate irrigation for landscape plants. Do not over water.
4. Limit fertilizer use unless soil testing indicates a deficiency. Slow-release or organic fertilizer is preferable. Check with municipality for specific requirements.
5. Pest control should avoid harming non-target organisms, or negatively affecting air and water quality and public health. Apply chemical controls only when monitoring indicates that preventative and non-chemical methods are not keeping pests below acceptable levels. When pesticides are required, apply the least toxic and the least persistent pesticide that will provide adequate pest control. Do not apply pesticides on a prescheduled basis.
6. Sweep up spilled fertilizer and pesticides. Do not wash away or bury such spills.
7. Do not over apply pesticide. Spray only where the infestation exists. Follow the manufacturer’s instructions for mixing and applying materials.
8. Only licensed, trained pesticide applicators shall apply pesticides.
9. Apply pesticides at the appropriate time to maximize their effectiveness and minimize the likelihood of discharging pesticides into runoff. With the exception of pre-emergent pesticides, avoid application if rain is expected.
10. Unwanted/unused pesticides shall be disposed as hazardous waste.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information

San Mateo County Mosquito Abatement District
1351 Rollins Road
 Burlingame, CA 94010
PH: (650) 344-8592
FAX: (650) 344-3843
Email: info@smcmad.org
IV. Inspections
The attached Bioretention Area Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Bioretention Area Maintenance Plan - Page 4

Bioretention Area Inspection and Maintenance Checklist

<table>
<thead>
<tr>
<th>Property Address:</th>
<th>Property Owner:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Measure No.:</th>
<th>Date of Inspection:</th>
<th>Type of Inspection:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After heavy runoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Wet Season</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End of Wet Season</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inspector(s):</th>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defect Conditions When Maintenance Is Needed

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Standing Water</td>
<td>When water stands in the bioretention area between storms and does not drain within five days after rainfall.</td>
<td></td>
<td></td>
<td>There should be no areas of standing water once inflow has ceased. Any of the following may apply: sediment or trash blockages removed, improved grade from head to foot of bioretention area, or added underdrains.</td>
</tr>
<tr>
<td>2. Trash and Debris Accumulation</td>
<td>Trash and debris accumulated in the bioretention area.</td>
<td></td>
<td></td>
<td>Trash and debris removed from bioretention area and disposed of properly.</td>
</tr>
<tr>
<td>3. Sediment</td>
<td>Evidence of sedimentation in bioretention area.</td>
<td></td>
<td></td>
<td>Material removed so that there is no clogging or blockage. Material is disposed of properly.</td>
</tr>
<tr>
<td>4. Erosion</td>
<td>Channels have formed around inlets, there are areas of bare soil, and/or other evidence of erosion.</td>
<td></td>
<td></td>
<td>Obstructions and sediment removed so that water flows freely and disperses over a wide area. Obstructions and sediment are disposed of properly.</td>
</tr>
<tr>
<td>5. Vegetation</td>
<td>Vegetation is dead, diseased and/or overgrown.</td>
<td></td>
<td></td>
<td>Vegetation is healthy and attractive in appearance.</td>
</tr>
<tr>
<td>6. Mulch</td>
<td>Mulch is missing or patchy in appearance. Areas of bare earth are exposed, or mulch layer is less than 3 inches in depth.</td>
<td></td>
<td></td>
<td>All bare earth is covered, except mulch is kept 6 inches away from trunks of trees and shrubs. Mulch is even in appearance, at a depth of 3 inches.</td>
</tr>
<tr>
<td>7. Miscellaneous</td>
<td>Any condition not covered above that needs attention in order for the bioretention area to function as designed.</td>
<td></td>
<td></td>
<td>Meet the design specifications.</td>
</tr>
</tbody>
</table>

Results Expected When Maintenance Is Performed

Meet the design specifications.
Flow-Through Planter Maintenance Plan for
[== Insert Project Name ==]
[== Insert Date ==]

The property contains [== insert number ==] flow-through planter(s), located as described below and as shown in the attached site plan:

- **Flow-Through Planter No. 1** is located at [== describe location ==].
- [== Add descriptions of other flow-through planters, if applicable ==]

I. **Routine Maintenance Activities**
The principal maintenance objectives are to ensure that water flows unimpeded into the flow-through planter and landscaping remains attractive in appearance. Table 1 shows the routine maintenance activities, and the frequency at which they will be conducted.

Table 1
<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluate health of trees and groundcover. Remove and replace all dead and diseased vegetation. Treat vegetation using preventative and low-toxic methods.</td>
<td>Twice a year</td>
</tr>
<tr>
<td>2</td>
<td>Maintain vegetation and the irrigation system. Prune and weed to keep flow-through planter neat and orderly in appearance.</td>
<td>As needed</td>
</tr>
<tr>
<td>3</td>
<td>Check that mulch is at appropriate depth (3 inches per soil specifications) and replenish as necessary.</td>
<td>Monthly</td>
</tr>
<tr>
<td>4</td>
<td>Check that soil is at appropriate depth. Till or replace soil as necessary to maintain a minimum of 6 inches between top of mulch and overflow weir.</td>
<td>Before wet season and as necessary</td>
</tr>
<tr>
<td>5</td>
<td>Remove accumulated sediment, litter and debris from flow-through planter and dispose of properly. Confirm that no clogging will occur and that the box will drain within three to four hours.</td>
<td>Before wet season and as necessary</td>
</tr>
<tr>
<td>6</td>
<td>Inspect flow-through planter to ensure that there are no clogs. Test with garden hose to confirm that the planter will drain within three to four hours.</td>
<td>Monthly during the wet season, and as needed after storm events</td>
</tr>
</tbody>
</table>
Table 1
Routine Maintenance Activities for Flow-Through Planters

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Inspect downspouts from rooftops and sheet flow from paved areas to ensure flow to planter box is unimpeded. Remove debris and repair damaged pipes. Check splash blocks or rocks and repair, replace and replenish as necessary.</td>
<td>Monthly during the wet season, and as needed after storm events</td>
</tr>
<tr>
<td>8</td>
<td>Inspect overflow pipe to ensure that it will safely convey excess flows to storm drain. Repair or replace any damaged or disconnected piping.</td>
<td>Before the wet season, and as necessary</td>
</tr>
<tr>
<td>9</td>
<td>Inspect flow-through planter to ensure that box is structurally sound (no cracks or leaks). Repair as necessary.</td>
<td>Annually</td>
</tr>
<tr>
<td>10</td>
<td>Inspect flow-through planter using the attached inspection checklist.</td>
<td>Monthly, or after large storm events, and after removal of accumulated debris or material</td>
</tr>
</tbody>
</table>

II. Prohibitions
The use of pesticides and quick release fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed:

1. Employ non-chemical controls (biological, physical and cultural controls) before using chemicals to treat a pest problem.
2. Prune plants properly and at the appropriate time of year.
3. Provide adequate irrigation for landscape plants. Do not over water.
4. Limit fertilizer use unless soil testing indicates a deficiency. Slow-release or organic fertilizer is preferable. Check with municipality for specific requirements.
5. Pest control should avoid harming non-target organisms, or negatively affecting air and water quality and public health. Apply chemical controls only when monitoring indicates that preventative and non-chemical methods are not keeping pests below acceptable levels. When pesticides are required, apply the least toxic and the least persistent pesticide that will provide adequate pest control. Do not apply pesticides on a prescheduled basis.
6. Sweep up spilled fertilizer and pesticides. Do not wash away or bury such spills.
7. Do not over apply pesticide. Spray only where the infestation exists. Follow the manufacturer’s instructions for mixing and applying materials.
8. Only licensed, trained pesticide applicators shall apply pesticides.
9. Apply pesticides at the appropriate time to maximize their effectiveness and minimize the likelihood of discharging pesticides into runoff. With the exception of pre-emergent pesticides, avoid application if rain is expected.
10. Unwanted/unused pesticides shall be disposed as hazardous waste.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information
San Mateo County Mosquito Abatement District
1351 Rollins Road
Burlingame, CA 94010
PH: (650) 344-8592
FAX: (650) 344-3843
IV. Inspections
The attached Flow-Through Planter Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Flow-Through Planter Inspection and Maintenance Checklist

Property Address:

Property Owner:

Treatment Measure No.:

Date of Inspection:

Type of Inspection:

Pre-Wet Season

Other:

Inspector(s):

### Defect	Conditions When Maintenance Is Needed	Maintenance Needed? (Y/N)	Comments (Describe maintenance completed and if needed maintenance was not conducted, note when it will be done)	Results Expected When Maintenance Is Performed
1. Vegetation | Vegetation is dead, diseased and/or overgrown. | | | Vegetation is healthy and attractive in appearance.
2. Soil | Soil too deep or too shallow. | | | Soil is at proper depth (per soil specifications) for optimum filtration and flow.
3. Mulch | Mulch is missing or patchy in appearance. Areas of bare earth are exposed, or mulch layer is less than 3 inches in depth. | | | All bare earth is covered, except mulch is kept 6 inches away from trunks of trees and shrubs. Mulch is even in appearance, at a depth of 3 inches.
4. Sediment, Trash and Debris Accumulation | Sediment, trash and debris accumulated in the flow-through planter. Planter does not drain as specified. | | | Sediment, trash and debris removed from flow-through planter and disposed of properly. Planter drains within 3-4 hours.
5. Clogs | Soil too deep or too shallow. Sediment, trash and debris accumulated in the flow-through planter. Planter does not drain within five days after rainfall. | | | Planter drains per design specifications.
6. Downspouts and Sheet Flow | Flow to planter is impeded. Downspouts are clogged or pipes are damaged. Splash blocks and rocks in need of repair, replacement or replenishment. | | | Downspouts and sheet flow is conveyed efficiently to the planter.
7. Overflow Pipe | Does not safely convey excess flows to storm drain. Piping damaged or disconnected. | | | Overflow pipe conveys excess flow to storm drain efficiently.
8. Structural Soundness | Planter is cracked, leaking or falling apart. | | | Cracks and leaks are repaired and planter is structurally sound.
9. Miscellaneous | Any condition not covered above that needs attention in order for the flow-through planter to function as designed. | | | Meet the design specifications.
Tree Well Filter Maintenance Plan for
[[== Insert Project Name ==]]
[[== Insert Date =]]

Project Address and Cross Streets__________
__
Assessor’s Parcel No.: ____________________
Property Owner: _________________________
Phone No.:_____________________________
Designated Contact: _____________________
Phone No.:_____________________________
Mailing Address:________________________

The property contains [[== insert number ==]] tree well filter(s), located as described below and as shown in the attached site plan:

- **Tree Well Filter No. 1** is located at [[== describe location ==]].
- [[== Add descriptions of other tree well filters, if applicable ==]]

I. **Routine Maintenance Activities**
The principal maintenance objective is to prevent sediment buildup and clogging, which reduces pollutant removal efficiency and may lead to tree well filter failure. Routine maintenance activities, and the frequency at which they will be conducted, are shown in Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluate health of trees and groundcover. Remove and replace all dead and diseased vegetation. Treat vegetation using preventative and low-toxic methods.</td>
<td>Twice a year</td>
</tr>
<tr>
<td>2</td>
<td>Maintain vegetation and the irrigation system. Prune and weed to keep tree well filter neat and orderly in appearance.</td>
<td>As needed</td>
</tr>
<tr>
<td>3</td>
<td>Check that planting mix is at appropriate depth and replenish as necessary.</td>
<td>Before wet season and as necessary</td>
</tr>
<tr>
<td>4</td>
<td>Check that mulch is at appropriate depth (3 inches per soil specifications) and replenish as necessary.</td>
<td>Monthly</td>
</tr>
<tr>
<td>5</td>
<td>Remove sediment, litter and debris from tree well filter. Confirm that no clogging will occur and that the filter will drain per the design specifications. Dispose of sediment, litter and debris properly.</td>
<td>Before wet season and as necessary</td>
</tr>
</tbody>
</table>
Table 1
Routine Maintenance Activities for Tree Well Filters

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity Description</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Inspect Tree Well Filter to ensure that it drains between storms and within five days after rainfall.</td>
<td>Periodically or as needed after storm events</td>
</tr>
<tr>
<td>7</td>
<td>Inspect overflow pipe to ensure that it will safely convey excess flows to storm drain. Repair or replace any damaged or disconnected piping.</td>
<td>As necessary</td>
</tr>
<tr>
<td>8</td>
<td>Inspect tree well filter using the attached inspection checklist.</td>
<td>Monthly, or after large storm events, and after removal of accumulated debris or material</td>
</tr>
</tbody>
</table>

II. Prohibitions
The use of pesticides and quick release fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed:

1. Employ non-chemical controls (biological, physical and cultural controls) before using chemicals to treat a pest problem.
2. Prune plants properly and at the appropriate time of year.
3. Provide adequate irrigation for landscape plants. Do not over water.
4. Limit fertilizer use unless soil testing indicates a deficiency. Slow-release or organic fertilizer is preferable. Check with municipality for specific requirements.
5. Pest control should avoid harming non-target organisms, or negatively affecting air and water quality and public health. Apply chemical controls only when monitoring indicates that preventative and non-chemical methods are not keeping pests below acceptable levels. When pesticides are required, apply the least toxic and the least persistent pesticide that will provide adequate pest control. Do not apply pesticides on a prescheduled basis.
6. Sweep up spilled fertilizer and pesticides. Do not wash away or bury such spills.
7. Do not over apply pesticide. Spray only where the infestation exists. Follow the manufacturer’s instructions for mixing and applying materials.
8. Only licensed, trained pesticide applicators shall apply pesticides.
9. Apply pesticides at the appropriate time to maximize their effectiveness and minimize the likelihood of discharging pesticides into runoff. With the exception of pre-emergent pesticides, avoid application if rain is expected.
10. Unwanted/unused pesticides shall be disposed as hazardous waste.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information
San Mateo County Mosquito Abatement District
1351 Rollins Road
Burlingame, CA 94010
PH: (650) 344-8592, FAX: (650) 344-3843
Email: info@smcmad.org

IV. Inspections
The attached Tree Well Filter Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Tree Well Filter
Inspection and Maintenance Checklist

Property Address: ____________________________ **Property Owner:** ____________________________

Treatment Measure No.: __________ **Date of Inspection:** __________ **Type of Inspection:**
- Monthly
- After heavy runoff
- End of Wet Season
- Other: __________

Inspector(s): ____________________________

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if needed maintenance was not conducted, note when it will be done)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vegetation</td>
<td>Vegetation is dead, diseased and/or overgrown.</td>
<td></td>
<td>Vegetation is healthy and attractive in appearance.</td>
<td></td>
</tr>
<tr>
<td>2. Planting Mix</td>
<td>Planting mix too deep or too shallow.</td>
<td></td>
<td>Planting mix is at proper depth for optimum filtration and flow.</td>
<td></td>
</tr>
<tr>
<td>3. Mulch</td>
<td>Mulch is missing or patchy in appearance. Areas of bare earth are exposed, or mulch layer is less than 3 inches in depth.</td>
<td></td>
<td>All bare earth is covered, except mulch is kept 6 inches away from trunks of trees and shrubs. Mulch is even in appearance, at a depth of 3 inches.</td>
<td></td>
</tr>
<tr>
<td>4. Trash and Debris Accumulation</td>
<td>Trash and debris accumulated in the tree well filter. Filter does not drain as specified.</td>
<td></td>
<td>Trash and debris removed from tree well filter and disposed of properly. Filter drains per design specifications.</td>
<td></td>
</tr>
<tr>
<td>5. Sediment</td>
<td>Evidence of sedimentation in tree well filter.</td>
<td></td>
<td>Material removed so that there is no clogging or blockage. Sediment is disposed of properly.</td>
<td></td>
</tr>
<tr>
<td>6. Standing Water</td>
<td>When water stands in the tree well filter between storms and does not drain within five days after rainfall.</td>
<td></td>
<td>There should be no areas of standing water once inflow has ceased. Any of the following may apply: sediment or trash blockages removed, overflow pipe repaired.</td>
<td></td>
</tr>
<tr>
<td>7. Overflow Pipe</td>
<td>Does not safely convey excess flows to storm drain. Piping damaged or disconnected.</td>
<td></td>
<td>Overflow pipe conveys excess flow to storm drain efficiently.</td>
<td></td>
</tr>
<tr>
<td>8. Miscellaneous</td>
<td>Any condition not covered above that needs attention in order for the tree well filter to function as designed.</td>
<td></td>
<td>Meet the design specifications.</td>
<td></td>
</tr>
</tbody>
</table>
Vegetated Buffer Strip Maintenance Plan for

[== Insert Project Name ==]

[== Insert Date ==]

Vegetated Buffer Strips are vegetated surfaces that are designed to treat sheet flow from adjacent surfaces. They function by slowing runoff velocities and allowing sediment and other pollutants to settle and by providing some infiltration into underlying soils.

Project Address and Cross Streets

Assessor’s Parcel No.: _______________________

Property Owner: ____________________________ Phone No.: _______________________

Designated Contact: ________________________ Phone No.: _______________________

Mailing Address: _____________________________

The property contains [== insert number ==] vegetated buffer strip(s), located as described below and as shown in the attached site plan:

- **Vegetated Buffer Strip No. 1** is located at [== describe location ==].
- [== Add descriptions of other buffer strips, if applicable. ==]

I. Routine Maintenance Activities

The principal maintenance objective for vegetated buffer strips is to achieve the pollutant removal efficiency of the buffer strip, as designed, by maintaining a dense, healthy vegetated cover. Routine maintenance activities, and the frequency at which they will be conducted, are shown in Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mow turf grass to [== indicate height ==]. Remove grass cuttings. Avoid producing</td>
<td>[== insert frequency ==]</td>
</tr>
<tr>
<td></td>
<td>ruts when mowing.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Irrigate during dry weather.</td>
<td>[== insert frequency to maintain design height ==]</td>
</tr>
<tr>
<td>3</td>
<td>Remove obstructions and trash from vegetated buffer strip and dispose of properly.</td>
<td>Monthly, or as needed</td>
</tr>
<tr>
<td>4</td>
<td>Inspect buffer strip to check for erosion and sediment and debris accumulation.</td>
<td>Twice a year: 1) one inspection at the end of the wet season in order to plan and schedule summer</td>
</tr>
<tr>
<td></td>
<td>Dispose of sediment and debris properly.</td>
<td></td>
</tr>
</tbody>
</table>
Table 1
Routine Maintenance Activities for Vegetated Buffer Strips

<table>
<thead>
<tr>
<th></th>
<th>Activity Description</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(cont.)</td>
<td>maintenance, 2) the other inspection after periods of heavy runoff</td>
</tr>
<tr>
<td>5</td>
<td>Remove sediment accumulating near culverts and in channels when it builds up to 75 millimeters (3 inches) at any spot, or if it covers vegetation. Dispose of sediment properly.</td>
<td>As needed</td>
</tr>
<tr>
<td>6</td>
<td>Inspect buffer strip using the attached inspection checklist.</td>
<td>Monthly, or as needed</td>
</tr>
</tbody>
</table>

II. Prohibitions
The use of pesticides and quick release fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed:

1. Employ non-chemical controls (biological, physical and cultural controls) before using chemicals to treat a pest problem.
2. Prune plants properly and at the appropriate time of year.
3. Provide adequate irrigation for landscape plants. Do not over water.
4. Limit fertilizer use unless soil testing indicates a deficiency. Slow-release or organic fertilizer is preferable. Check with municipality for specific requirements.
5. Pest control should avoid harming non-target organisms, or negatively affecting air and water quality and public health. Apply chemical controls only when monitoring indicates that preventative and non-chemical methods are not keeping pests below acceptable levels. When pesticides are required, apply the least toxic and the least persistent pesticide that will provide adequate pest control. Do not apply pesticides on a prescheduled basis.
6. Sweep up spilled fertilizer and pesticides. Do not wash away or bury such spills.
7. Do not over apply pesticide. Spray only where the infestation exists. Follow the manufacturer’s instructions for mixing and applying materials.
8. Only licensed, trained pesticide applicators shall apply pesticides.
9. Apply pesticides at the appropriate time to maximize their effectiveness and minimize the likelihood of discharging pesticides into runoff. With the exception of pre-emergent pesticides, avoid application if rain is expected.
10. Unwanted/unused pesticides shall be disposed as hazardous waste.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information
San Mateo County Mosquito Abatement District
1351 Rollins Road
Burlingame, CA 94010
PH:(650) 344-8592 FAX: (650) 344-3843
Email: info@smcmad.org

IV. Inspections
The attached Vegetated Buffer Strip Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Vegetated Buffer Strip Maintenance Plan - Page 3

Vegetated Buffer Strip Inspection and Maintenance Checklist

Property Address: ____________________________ **Property Owner:** ____________________________

Treatment Measure No.: ____________ **Date of Inspection:** ____________ **Type of Inspection:** Monthly

- Pre-Wet Season
- After heavy runoff
- End of Wet Season
- Other: ____________

Inspector(s): ____________________________

Defect Conditions When Maintenance Is Needed

<table>
<thead>
<tr>
<th>Defect</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if needed maintenance was not conducted, note when it will be done)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sediment Accumulation on Vegetation</td>
<td></td>
<td>Remove accumulated sediment deposits. When finished, buffer strip should be level from side to side and drain freely toward outlet. There should be no areas of standing water once inflow has ceased. Dispose of sediment properly.</td>
<td></td>
</tr>
<tr>
<td>2. Standing Water Water stands in the buffer strip between storms and does not drain within five days after rainfall.</td>
<td></td>
<td>There should be no areas of standing water once inflow has ceased. Any of the following may apply: sediment or trash blockages removed, improved grade from head to foot of buffer strip, removed clogged check dams, added underdrains or converted to a wet buffer strip.</td>
<td></td>
</tr>
<tr>
<td>3. Flow spreader (if any) Flow spreader uneven or clogged such that flows are not uniformly distributed through entire buffer strip width.</td>
<td></td>
<td>Spreader leveled and cleaned so that flows are spread evenly over entire buffer strip width.</td>
<td></td>
</tr>
<tr>
<td>4. Constant Baseflow When small quantities of water continually flow through the buffer strip, even when it has been dry for weeks, and an eroded, muddy channel has formed in the buffer strip bottom.</td>
<td></td>
<td>No eroded, muddy channel on the bottom. A low-flow pea-gravel drain may be added the length of the buffer strip.</td>
<td></td>
</tr>
<tr>
<td>5. Poor Vegetation Coverage When planted vegetation is sparse or bare or eroded, patches occur in more than 10% of the buffer strip bottom.</td>
<td></td>
<td>Vegetation coverage in more than 90% of the buffer strip bottom. Determine why growth of planted vegetation is poor and correct that condition. Replant with plugs of vegetation from the upper slope: plant in the buffer strip bottom at 8-inch intervals, or reseed into loosened, fertile soil.</td>
<td></td>
</tr>
</tbody>
</table>
Vegetated Buffer Strip Inspection and Maintenance Checklist

Date of Inspection:

Property Address:

Treatment Measure No.:

Defect Conditions When Maintenance is Needed

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if needed maintenance was not conducted, note when it will be done)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Vegetation</td>
<td>When the planted vegetation becomes excessively tall; when nuisance weeds and other vegetation start to take over.</td>
<td></td>
<td>Vegetation mowed per specifications or maintenance plan, or nuisance vegetation removed so that flow is not impeded. Vegetation should never be mowed lower than the design flow depth. Remove clippings from the buffer strip and dispose appropriately.</td>
<td></td>
</tr>
<tr>
<td>7. Excessive Shading</td>
<td>Growth of planted vegetation is poor because sunlight does not reach buffer strip.</td>
<td></td>
<td>Healthy growth of planted vegetation. If possible, trim back over-hanging limbs and remove brushy vegetation on adjacent slopes.</td>
<td></td>
</tr>
<tr>
<td>8. Inlet/Outlet</td>
<td>Inlet/outlet areas clogged with sediment and/or debris.</td>
<td></td>
<td>Material removed so that there is no clogging or blockage in the inlet and outlet areas.</td>
<td></td>
</tr>
<tr>
<td>10. Erosion/Scouring</td>
<td>Eroded or scoured buffer strip bottom due to flow channelization, or higher flows.</td>
<td></td>
<td>No erosion or scouring in buffer strip bottom. For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with crushed gravel. If bare areas are large, generally greater than 12 inches wide, the buffer strip should be re-graded and re-seeded. For smaller bare areas, overseed when bare spots are evident, or take plugs of grass from the upper slope and plant in the buffer strip bottom at 8-inch intervals.</td>
<td></td>
</tr>
<tr>
<td>11. Miscellaneous</td>
<td>Any condition not covered above that needs attention in order for the vegetated buffer strip to function as designed.</td>
<td></td>
<td>Meet the design specifications.</td>
<td></td>
</tr>
</tbody>
</table>
Infiltration Trench Maintenance Plan for

[[== Insert Project Name ==]]

[[== Insert Date ==]]

The property contains [[== insert number ==]] infiltration trench(es), located as described below and as shown in the attached site plan.

- **Infiltration Trench No. 1** is located at [[== describe location ==]].
- [[== Add descriptions of other infiltration trenches, if applicable ==]]

I. Routine Maintenance Activities

The principal maintenance objective is to prevent sediment buildup and clogging, which reduces pollutant removal efficiency and may lead to trench failure. Routine maintenance activities, and the frequency at which they will be conducted, are shown in Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove obstructions, debris and trash from infiltration trench and dispose of properly.</td>
<td>Monthly, or as needed after storm events</td>
</tr>
<tr>
<td>2</td>
<td>Inspect trench to ensure that it drains between storms, and within 5 days after rainfall. Check observation well 2-3 days after storm to confirm drainage.</td>
<td>Monthly during wet season, or as needed after storm events</td>
</tr>
<tr>
<td>3</td>
<td>Inspect filter fabric for sediment deposits by removing a small section of the top layer.</td>
<td>Annually</td>
</tr>
<tr>
<td>4</td>
<td>Monitor observation well to confirm that trench has drained during dry season.</td>
<td>Annually, during dry season</td>
</tr>
<tr>
<td>5</td>
<td>Mow and trim vegetation around the trench to maintain a neat and orderly appearance.</td>
<td>As needed</td>
</tr>
<tr>
<td>6</td>
<td>Remove any trash, grass clippings and other debris from the trench perimeter and dispose of properly.</td>
<td>As needed</td>
</tr>
<tr>
<td>7</td>
<td>Check for erosion at inflow or overflow structures.</td>
<td>As needed</td>
</tr>
<tr>
<td>8</td>
<td>Confirm that cap of observation well is sealed.</td>
<td>At every inspection</td>
</tr>
<tr>
<td>9</td>
<td>Inspect infiltration trench using the attached inspection checklist.</td>
<td>Monthly, or after large storm events, and after removal of accumulated debris or material</td>
</tr>
</tbody>
</table>

An infiltration trench is a long, narrow, excavated trench backfilled with a stone aggregate, and lined with a filter fabric. Runoff is stored in the void space between the stones and infiltrates through the bottom and into the soil matrix.
II. Prohibitions
Trees and other large vegetation shall be prevented from growing adjacent to the trench to prevent damage.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information
San Mateo County Mosquito Abatement District
1351 Rollins Road
Burlingame, CA 94010
PH: (650) 344-8592
FAX: (650) 344-3843
Email: info@smcmad.org

IV. Inspections
The attached Infiltration Trench Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Infiltration Trench Inspection and Maintenance Checklist

<table>
<thead>
<tr>
<th>Property Address:</th>
<th>Property Owner:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Measure No.:</th>
<th>Date of Inspection:</th>
<th>Type of Inspection:</th>
<th>Pre-Wet Season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monthly</td>
<td>Other:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After heavy runoff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>End of Wet Season</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inspector(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Standing Water</td>
<td>When water stands in the infiltration trench between storms and does not drain within 5 days after rainfall.</td>
<td></td>
<td></td>
<td>There should be no areas of standing water once inflow has ceased. Any of the following may apply: sediment or trash blockages removed, improved grade from head to foot of infiltration trench, removed clogging at check dams, or added underdrains.</td>
</tr>
<tr>
<td>2. Trash and Debris Accumulation</td>
<td>Trash and debris accumulated in the infiltration trench.</td>
<td></td>
<td></td>
<td>Trash and debris removed from infiltration trench and disposed of properly.</td>
</tr>
<tr>
<td>3. Sediment</td>
<td>Evidence of sedimentation in trench. less than 50% storage volume remaining in sediment traps, forebays or pretreatment swales.</td>
<td></td>
<td></td>
<td>Material removed and disposed of properly so that there is no clogging or blockage.</td>
</tr>
<tr>
<td>4. Inlet/Outlet</td>
<td>Inlet/outlet areas clogged with sediment or debris, and/or eroded.</td>
<td></td>
<td></td>
<td>Material removed and disposed of properly so that there is no clogging or blockage in the inlet and outlet areas.</td>
</tr>
<tr>
<td>5. Overflow Spillway</td>
<td>Clogged with sediment or debris, and/or eroded.</td>
<td></td>
<td></td>
<td>Material removed and disposed of properly so that there is no clogging or blockage, and trench is restored to design condition.</td>
</tr>
<tr>
<td>6. Filter Fabric</td>
<td>Annual inspection, by removing a small section of the top layer, shows sediment accumulation that may lead to trench failure.</td>
<td></td>
<td></td>
<td>Replace filter fabric, as needed, to restore infiltration trench to design condition.</td>
</tr>
<tr>
<td>7. Observation Well</td>
<td>Routine monitoring of observation well indicates that trench is not draining within specified time or observation well cap is missing.</td>
<td></td>
<td></td>
<td>Restore trench to design conditions. Observation well cap is sealed.</td>
</tr>
<tr>
<td>8. Miscellaneous</td>
<td>Any condition not covered above that needs attention in order for the infiltration to meet the design specifications.</td>
<td></td>
<td></td>
<td>Meet the design specifications.</td>
</tr>
</tbody>
</table>

Infiltration Trench Maintenance Plan - Page 3
<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if needed maintenance was not conducted, note when it will be done)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>trench to function as designed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infiltration Trench Maintenance Plan - Page 4

Final Draft 6/13/07
The property contains [[== insert number ==]] extended detention basins, located as described below and as shown in the attached site plan.

- **Extended Detention Basin No. 1** is located at [[== describe location ==]].
- [[== Add descriptions of other extended detention basins, if applicable. ==]]
- [[== Identify Extended Detention Basin(s) designed for Hydromodification Management (HM).]]

I. **Routine Maintenance Activities**

Primary maintenance activities include vegetation management and sediment removal, although mosquito abatement is a concern if the extended detention basin is designed to include permanent pools of standing water. Routine maintenance activities, and the frequency at which they will be conducted, are shown in Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conduct annual vegetation management during the summer, removing weeds and harvesting vegetation. Remove all grass cuttings and other green waste.</td>
<td>Once a year</td>
</tr>
<tr>
<td>2</td>
<td>Trim vegetation at beginning and end of wet season to prevent establishment of woody vegetation, and for aesthetics and mosquito control.</td>
<td>Twice a year (spring and fall)</td>
</tr>
<tr>
<td>3</td>
<td>Evaluate health of vegetation and remove and replace any dead or dying plants. Remove all green waste and dispose of properly.</td>
<td>Twice a year</td>
</tr>
<tr>
<td>4</td>
<td>If turf grass is included in basin design, conduct regular mowing and remove all grass cuttings. Avoid producing ruts when mowing.</td>
<td>[[== insert frequency, if applicable ==]]</td>
</tr>
<tr>
<td>5</td>
<td>Remove sediment from forebay when the sediment level reaches the level shown on the fixed vertical sediment marker and dispose of sediment properly.</td>
<td>As needed</td>
</tr>
</tbody>
</table>
Table 1
Routine Maintenance Activities for Extended Detention Basins

<table>
<thead>
<tr>
<th></th>
<th>Activity Description</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Remove accumulated sediment and regrade when the accumulated sediment volume exceeds 10% of basin volume and dispose of sediment properly.</td>
<td>Every 10 years, or as needed [[to maintain 2 in. clearance below low-flow orifice for HM design]]</td>
</tr>
<tr>
<td>7</td>
<td>Remove accumulated trash and debris from the extended detention basin at the middle and end of the wet season and dispose of trash and debris properly.</td>
<td>Twice a year (January and April)</td>
</tr>
<tr>
<td>8</td>
<td>Irrigate during dry weather.</td>
<td>[[== insert frequency ==]]</td>
</tr>
<tr>
<td>9</td>
<td>Inspect extended detention basin using the attached inspection checklist.</td>
<td>Quarterly, or as needed</td>
</tr>
</tbody>
</table>

II. Prohibitions

The use of pesticides and quick release fertilizers shall be minimized, and the principles of integrated pest management (IPM) followed:

1. Employ non-chemical controls (biological, physical and cultural controls) before using chemicals to treat a pest problem.
2. Prune plants properly and at the appropriate time of year.
3. Provide adequate irrigation for landscape plants. Do not over water.
4. Limit fertilizer use unless soil testing indicates a deficiency. Slow-release or organic fertilizer is preferable. Check with municipality for specific requirements.
5. Pest control should avoid harming non-target organisms, or negatively affecting air and water quality and public health. Apply chemical controls only when monitoring indicates that preventative and non-chemical methods are not keeping pests below acceptable levels. When pesticides are required, apply the least toxic and the least persistent pesticide that will provide adequate pest control. Do not apply pesticides on a prescheduled basis.
6. Sweep up spilled fertilizer and pesticides. Do not wash away or bury such spills.
7. Do not over apply pesticide. Spray only where the infestation exists. Follow the manufacturer’s instructions for mixing and applying materials.
8. Only licensed, trained pesticide applicators shall apply pesticides.
9. Apply pesticides at the appropriate time to maximize their effectiveness and minimize the likelihood of discharging pesticides into runoff. With the exception of pre-emergent pesticides, avoid application if rain is expected.
10. Unwanted/unused pesticides shall be disposed as hazardous waste.
11. Maintenance activities at the bottom of the extended detention basin shall not be performed with heavy equipment, which would compact the soil and limit infiltration.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information

San Mateo County Mosquito Abatement District
1351 Rollins Road
Burlingame, CA 94010
PH: (650) 344-8592
FAX: (650) 344-3843
IV. Inspections
The attached Extended Detention Basin Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Extended Detention Basin
Inspection and Maintenance Checklist

<table>
<thead>
<tr>
<th>Property Address:</th>
<th>Property Owner:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Measure No.:</th>
<th>Date of Inspection:</th>
<th>Type of Inspection:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Wet Season</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After heavy runoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End of Wet Season</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inspector(s):</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if any needed maintenance was not conducted, note when it will be done.)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trash & Debris</td>
<td>• Trash and debris accumulated in basin.</td>
<td></td>
<td>Trash and debris cleared from site and disposed of properly.</td>
<td></td>
</tr>
<tr>
<td>Poisonous Vegetation and noxious weeds</td>
<td>Poisonous or nuisance vegetation or noxious weeds, e.g., morning glory, English ivy, reed canary grass, Japanese knotweed, purple loosestrife, blackberry, Scotch broom, poison oak, stinging nettles, or devil's club.</td>
<td></td>
<td>Use Integrated Pest Management techniques to control noxious weeds or invasive species.</td>
<td></td>
</tr>
<tr>
<td>Contaminants and Pollution</td>
<td>Any evidence of oil, gasoline, contaminants or other pollutants.</td>
<td></td>
<td>No contaminants or pollutants present.</td>
<td></td>
</tr>
<tr>
<td>Rodent Holes</td>
<td>If facility acts as a dam or berm, any evidence of rodent holes, or any evidence of water piping through dam or berm via rodent holes.</td>
<td></td>
<td>The design specifications are not compromised by holes. Any rodent control activities are in accordance with applicable laws and do not affect any protected species.</td>
<td></td>
</tr>
<tr>
<td>Insects</td>
<td>Insects such as wasps and hornets interfere with maintenance activities.</td>
<td></td>
<td>Insects do not interfere with maintenance activities.</td>
<td></td>
</tr>
</tbody>
</table>

Results Expected When Maintenance Is Performed

Trash and debris cleared from site and disposed of properly.

Use Integrated Pest Management techniques to control noxious weeds or invasive species.

No contaminants or pollutants present.

The design specifications are not compromised by holes. Any rodent control activities are in accordance with applicable laws and do not affect any protected species.

Insects do not interfere with maintenance activities.
Defects and Maintenance Checklist

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if any needed maintenance was not conducted, note when it will be done.)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree/Brush Growth and Hazard Trees</td>
<td>• Growth does not allow maintenance access or interferes with maintenance activity.
 • Dead, diseased, or dying trees.</td>
<td></td>
<td>• Trees do not hinder maintenance activities.
 • Remove hazard trees as approved by the City. (Use a certified Arborist to determine health of tree or removal requirements).</td>
<td></td>
</tr>
<tr>
<td>Drainage time</td>
<td>Standing water remains in basin more than five days.</td>
<td></td>
<td>Correct any circumstances that restrict the flow of water from the system. Restore drainage to design condition.
 If the problem cannot be corrected and problems with standing water recur, then mosquitoes should be controlled with larvicides, applied by a licensed pesticide applicator.</td>
<td></td>
</tr>
<tr>
<td>Outfall structure</td>
<td>Debris or silt build-up obstructs an outfall structure.</td>
<td></td>
<td>Remove debris and/or silt build-up and dispose of properly.</td>
<td></td>
</tr>
<tr>
<td>Side Slopes</td>
<td></td>
<td></td>
<td>Cause of erosion is managed appropriately.
 Side slopes or berm are restored to design specifications, as needed.</td>
<td></td>
</tr>
<tr>
<td>Erosion</td>
<td>• Eroded over 2 in. deep where cause of damage is still present or where there is potential for continued erosion.
 • Any erosion on a compacted berm embankment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Area</td>
<td>Accumulated sediment >10% of designed basin depth or affects inletting or outletting condition of the facility.</td>
<td></td>
<td>Sediment cleaned out to designed basin shape and depth; basin reseeded if necessary to control erosion.
 Sediment disposed of properly.</td>
<td></td>
</tr>
<tr>
<td>Liner (If Applicable)</td>
<td>Liner is visible and has more than three 1/4-inch holes in it.</td>
<td></td>
<td>Liner repaired or replaced.
 Liner is fully covered.</td>
<td></td>
</tr>
<tr>
<td>Emergency Overflow/ Spillway and Berms</td>
<td></td>
<td></td>
<td>Dike is built back to the design elevation.</td>
<td></td>
</tr>
<tr>
<td>Settlement</td>
<td>Berm settlement 4 inches lower than the design elevation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extended Detention Basin Inspection and Maintenance Checklist

Date of Inspection: __________________

Property Address: __________________

Treatment Measure No.: __________________

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if any needed maintenance was not conducted, note when it will be done.)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Growth</td>
<td>Tree growth on berms or emergency spillway >4 ft in height or covering more than 10% of spillway.</td>
<td></td>
<td>• Trees should be removed. If root system is small (base less than 4 inches) the root system may be left in place. Otherwise the roots should be removed and the berm restored.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A civil engineer should be consulted for proper berm/spillway restoration.</td>
<td></td>
</tr>
<tr>
<td>Emergency Overflow/Spillway</td>
<td>Rock is missing and soil is exposed at top of spillway or outside slope.</td>
<td></td>
<td>Rocks and pad depth are restored to design standards.</td>
<td></td>
</tr>
</tbody>
</table>

Debris Barriers (e.g., Trash Racks)

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if any needed maintenance was not conducted, note when it will be done.)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash and Debris</td>
<td>Trash or debris is plugging openings in the barrier.</td>
<td></td>
<td>Trash or debris is removed and disposed of properly.</td>
<td></td>
</tr>
<tr>
<td>Damaged/Missing Bars</td>
<td>Bars are missing, loose, bent out of shape, or deteriorating due to excessive rust.</td>
<td></td>
<td>Bars are repaired or replaced to allow proper functioning of trash rack.</td>
<td></td>
</tr>
<tr>
<td>Inlet/Outlet Pipe</td>
<td>Debris barrier is missing or not attached to pipe.</td>
<td></td>
<td>Debris barrier is repaired or replaced to allow proper functioning of trash rack.</td>
<td></td>
</tr>
</tbody>
</table>

Fencing and Gates

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if any needed maintenance was not conducted, note when it will be done.)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing or broken parts</td>
<td>Any defect in or damage to the fence or gate that permits easy entry to a facility.</td>
<td></td>
<td>Fencing and gate are restored to design specifications.</td>
<td></td>
</tr>
<tr>
<td>Deteriorating Paint or Protective Coating</td>
<td>Part or parts that have a rusting or scaling condition that has affected structural adequacy.</td>
<td></td>
<td>Paint or protective coating is sufficient to protect structural adequacy of fence or gate.</td>
<td></td>
</tr>
</tbody>
</table>

Flow Duration Control Outlet (if included in design to meet Hydromodification Management Standard) [[==refer to any attachments with additional provisions==]]

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if any needed maintenance was not conducted, note when it will be done.)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risers, orifices and screens</td>
<td>Any debris or clogging</td>
<td></td>
<td>Restore unobstructed flow through discharge structure; to meet original design; dispose of debris properly.</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if any needed maintenance was not conducted, note when it will be done.)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
<td>Any condition not covered above that needs attention to restore extended detention basin to design conditions.</td>
<td></td>
<td>Meets the design specifications.</td>
<td></td>
</tr>
</tbody>
</table>
Non-Proprietary Media Filter Maintenance Plan for
[[== Insert Project Name ==]]

[[== Insert Date ==]]

Non-proprietary media filters are usually two-chambered, including a pretreatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber.

1 Attached site plan must match the site plan exhibit to Maintenance Agreement.

I. Routine Maintenance Activities
The principal maintenance objective is to prevent sediment buildup and clogging, which reduces pollutant removal efficiency and may lead to Non-Proprietary Media Filter failure. Routine maintenance activities, and the frequency at which they will be conducted, are shown in Table 1.
Non-Proprietary Media Filter Maintenance Plan

Table 1
Routine Maintenance Activities for Non-Proprietary Media Filters

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspect for standing water, sediment, trash and debris.</td>
<td>Monthly during rainy season</td>
</tr>
<tr>
<td>2</td>
<td>Remove sediment, trash and debris from sedimentation basin, riser pipe and filter bed. Dispose of sediment, trash and debris properly.</td>
<td>As needed</td>
</tr>
<tr>
<td>3</td>
<td>Ensure that non-proprietary media filter drains completely within five days.</td>
<td>After major storm events and as needed.</td>
</tr>
<tr>
<td>4</td>
<td>For non-proprietary media filters with a filter bed, inspect media depth to ensure proper drainage.</td>
<td>Monthly during rainy season, or as needed after storm events</td>
</tr>
<tr>
<td>5</td>
<td>Inspect non-proprietary media filter using the attached inspection checklist.</td>
<td>Monthly, or after large storm events, and after removal of accumulated debris or material</td>
</tr>
</tbody>
</table>

II. Prohibitions

Trees and other large vegetation shall be prevented from growing adjacent to the non-proprietary media filter to prevent damage.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information

San Mateo County Mosquito Abatement District
1351 Rollins Road
Burlingame, CA 94010
PH: (650) 344-8592
FAX: (650) 344-3843
Email: info@smcmad.org

IV. Inspections

The attached Non-Proprietary Media Filter Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Non-Proprietary Media Filter Inspection and Maintenance Checklist

Property Address: ___________________________
Property Owner: ___________________________

Treatment Measure No.: ___________
Date of Inspection: ___________
Type of Inspection: Monthly
- Pre-Wet Season
- After heavy runoff
- End of Wet Season
- Other: ___________________________

Inspector(s): ___________________________

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if needed maintenance was not conducted, note when it will be done)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sediment, trash and debris accumulation</td>
<td>Sediment, trash and debris accumulated in the sedimentation basin, riser pipe and filter bed. Filter does not drain as specified.</td>
<td>Sediment, trash and debris removed from sedimentation basin, riser pipe and filter bed and disposed of properly. Filter drains per design specifications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Standing water</td>
<td>Non-proprietary media filter does not drain within five days after rainfall.</td>
<td></td>
<td>Clogs removed from sedimentation basin, riser pipe and filter bed. Filter drains per design specifications.</td>
<td></td>
</tr>
<tr>
<td>4. Filter bed</td>
<td>Overall media depth 300 millimeters (12 inches) or less.</td>
<td></td>
<td>Media depth restored to 450 millimeters (18 inches).</td>
<td></td>
</tr>
<tr>
<td>5. Miscellaneous</td>
<td>Any condition not covered above that needs attention in order for the non-proprietary media filter to function as designed.</td>
<td></td>
<td>Meet the design specifications.</td>
<td></td>
</tr>
</tbody>
</table>
Manufactured Stormwater Treatment Measure Maintenance Plan for
[[== Insert Project Name ==]]
[[== Insert Date ==]]

Manufactured Stormwater Treatment Measures are PROPRIETARY treatment devices that tend to be installed below ground and operate using some type of proprietary filter media, hydrodynamic separation, or sedimentation and screening. Common examples of manufactured treatment measures include manufactured media filters, inlet filters or drain inserts, oil/water separators and hydrodynamic separators. In August 2004, the Regional Water Board’s Executive Office wrote a letter stating that a project relying on inlet filters or oil/water separators as the sole treatment measure would be unlikely to meet the maximum extent practicable standard of the National Pollutant Discharge Elimination System Permit. See the Countywide C.3 Technical Guidance (www.flowstobay.org) for more information.

Project Address: __
Assessor’s Parcel No.: ____________________________________
Property Owner: ___________________________ Phone No.:________
Designated Contact: ___________________________ Phone No.:________
Mailing Address: ______________________________________

The property contains [[== insert number ==]], [[== insert device type/manufacturer ==]] located as described below and as shown in the attached site plan1.
- [[== device name ==]] is located at [[== describe location ==]].
- [[== Add descriptions of other products, if applicable. ==]]

I. Routine Maintenance Activities
The principal maintenance objective is to prevent sediment buildup and clogging, which reduces pollutant removal efficiency and may lead to failure of the manufactured treatment measure. Routine maintenance activities, and the frequency at which they will be conducted, are shown in Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Maintenance Task</th>
<th>Frequency of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inspect for standing water, sediment, trash and debris.</td>
<td>Monthly during rainy season</td>
</tr>
<tr>
<td>2</td>
<td>Remove sediment, trash and debris from sedimentation basin, riser pipe and filter bed, using vactor truck method. Dispose of sediment, trash, filters and debris properly.</td>
<td>As needed</td>
</tr>
<tr>
<td>3</td>
<td>Ensure that manufactured treatment measure drains completely within five days.</td>
<td>After major storm events and as needed.</td>
</tr>
<tr>
<td>4</td>
<td>Inspect outlets to ensure proper drainage.</td>
<td>Monthly during rainy season, or as needed after storm events</td>
</tr>
<tr>
<td>5</td>
<td>Follow manufacturer’s guidelines for maintenance and cartridge replacement.</td>
<td>As per manufacturer’s specifications.</td>
</tr>
<tr>
<td>6</td>
<td>Inspect manufactured treatment measure, using the attached inspection checklist.</td>
<td>Monthly, or after large storm events, and after removal of accumulated debris or material</td>
</tr>
</tbody>
</table>

1 Attached site plan must match the site plan exhibit to Maintenance Agreement.
II. Prohibitions
Trees and other large vegetation shall be prevented from growing adjacent to the manufactured treatment measure to prevent damage.

Standing water shall not remain in the treatment measures for more than five days, to prevent mosquito generation. Should any mosquito issues arise, contact the San Mateo County Mosquito Abatement District (SMCMAD), as needed for assistance. Mosquito larvicides shall be applied only when absolutely necessary, as indicated by the SMCMAD, and then only by a licensed professional or contractor. Contact information for SMCMAD is provided below.

III. Mosquito Abatement Contact Information
San Mateo County Mosquito Abatement District
1351 Rollins Road
Burlingame, CA 94010
PH: (650) 344-8592
FAX: (650) 344-3843
Email: info@smcmad.org

IV. Inspections
The attached Treatment Measure Inspection and Maintenance Checklist shall be used to conduct inspections monthly (or as needed), identify needed maintenance, and record maintenance that is conducted.
Manufactured Stormwater Treatment Measure Inspection and Maintenance Checklist

Property Owner:

Property Address:

Date of Inspection:

Type of Inspection:

- Monthly
- Pre-Wet Season
- After heavy runoff
- End of Wet Season

System Type:

Installer/Contractor:

Manufacturer:

Inspector(s):

Defects and Maintenance

<table>
<thead>
<tr>
<th>Defect</th>
<th>Conditions When Maintenance Is Needed</th>
<th>Maintenance Needed? (Y/N)</th>
<th>Comments (Describe maintenance completed and if needed maintenance was not conducted, note when it will be done)</th>
<th>Results Expected When Maintenance Is Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sediment, trash and debris accumulation on Filter</td>
<td>Sediment, trash and debris accumulated in the sedimentation basin, riser pipe, retention pipes and filter bed. Filter does not drain as specified.</td>
<td>Y</td>
<td>Sediment, trash and debris removed from sedimentation basin, riser pipe and filter bed and disposed of properly. Filter drains per design specifications. Empty cartridge should be reassembled and reinstalled.</td>
<td></td>
</tr>
<tr>
<td>2. Standing water</td>
<td>Manufactured treatment measure does not drain within five days after rainfall.</td>
<td></td>
<td>Clogs removed from filters, sedimentation basin, riser pipe and filter bed. Filter drains per design specifications.</td>
<td></td>
</tr>
<tr>
<td>4. Miscellaneous</td>
<td>Any condition not covered above that needs attention in order for the manufactured treatment measure to function as designed.</td>
<td></td>
<td>Meet the design specifications.</td>
<td></td>
</tr>
</tbody>
</table>
Areas Subject to Hydromodification Management Requirements

This appendix presents the countywide Hydromodification Management (HM) Control Area Map, which identifies the geographical areas that are subject to hydromodification management (HM) requirements. The full countywide HM Control Area Map is followed by a series of maps that show detailed areas of the county in which the HM control area boundary does not follow major roadways.

Table of Contents

<table>
<thead>
<tr>
<th>Map Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countywide HM Control Area Map</td>
<td>H-2</td>
</tr>
<tr>
<td>Map Index for HM Control Area in Selected Areas of San Mateo County</td>
<td>H-3</td>
</tr>
<tr>
<td>City of Atherton (Map 1 of 1)</td>
<td>H-4</td>
</tr>
<tr>
<td>Cities of Brisbane and South San Francisco (Map 1 of 1)</td>
<td>H-5</td>
</tr>
<tr>
<td>Cities of Colma and South San Francisco (Map 1 of 1)</td>
<td>H-6</td>
</tr>
<tr>
<td>Daly City and Brisbane (Map 1 of 1)</td>
<td>H-7</td>
</tr>
<tr>
<td>Daly City and Unincorporated County (Maps 1 and 2)</td>
<td>H-8, 9</td>
</tr>
<tr>
<td>City of Millbrae (Map 1 of 1)</td>
<td>H-10</td>
</tr>
<tr>
<td>Cities of Millbrae and Burlingame (Maps 1 and 2)</td>
<td>H-11, 12</td>
</tr>
<tr>
<td>City of Pacifica (Maps 1 and 2)</td>
<td>H-13, 14</td>
</tr>
<tr>
<td>Cities of Pacifica, San Bruno and South San Francisco (Map 1 of 1)</td>
<td>H-15</td>
</tr>
<tr>
<td>Cities of Redwood City and San Carlos (Map 1 of 1)</td>
<td>H-16</td>
</tr>
<tr>
<td>Cities of San Bruno and Millbrae (Maps 1 and 2)</td>
<td>H-17, 18</td>
</tr>
<tr>
<td>City of San Mateo (Map 1 of 1)</td>
<td>H-19</td>
</tr>
<tr>
<td>Cities of San Mateo and Hillsborough (Map 1 of 1)</td>
<td>H-20</td>
</tr>
</tbody>
</table>
Cities of Millbrae and Burlingame Hydromodification Management (HM) Control Area Boundary for Selected Areas

Map 1 of 2

Legend

- County Assessor Parcel
- Creek or Engineered Channel
- Subject to HM Requirements
- Underground culvert or storm drain
- Exempt Area
- Jurisdictional Boundary

Map Revised August 2010

* This map series includes only areas where the HM control area boundary does NOT follow major roadways.
Feasibility Evaluation:
Infiltration and Rainwater Harvesting/Use

The purpose of this guidance is to assist project applicants and agency staff in determining whether it is feasible or infeasible for individual projects to treat the full water quality design flow or volume of stormwater runoff, as specified in MRP Provision C.3.d, using infiltration or rainwater harvesting and use. Where this is infeasible, biotreatment will be allowed. The information presented in this guidance is based on the “Harvest and Use, Infiltration and Evapotranspiration Feasibility/Infeasibility Criteria Report (Feasibility Report prepared by the Bay Area Stormwater Management Agencies Association (BASMAA) and submitted to the Regional Water Board on April 29, 2011.

Table of Contents
I.1 General Approach
I.2 Rainwater Harvesting/Use and Infiltration Feasibility Screening Worksheet Guidance
I.3 Infiltration Feasibility Worksheet Guidance
I.4 Rainwater Harvesting/Use Feasibility Worksheet Guidance
I.5 Worksheet Attachments
 • Infiltration Feasibility Worksheet
 • Rainwater Harvesting and Use Feasibility Worksheet
 • Attachment 1: Glossary
 • Attachment 2: Toilet-Flushing Demand for Harvested Rainwater
 • Attachment 3: Excerpts from the Feasibility Report (Maps Showing Soil Hydraulic Conductivity, Tables 8 through 11, and curves from the report’s Appendix F).

1 Provision C.3.c of the MRP requires that the C.3.d amount or runoff be treated with infiltration, evapotranspiration, or harvesting and use, or, where this is infeasible, biotreatment. Evapotranspiration will occur in all landscape-based treatment and was incorporated in modeling of infiltration and rainwater harvesting/use conducted for the Feasibility Report.

2 This report is available on the Countywide Program’s website (www.flowstobay.org – click on “Business”, then “New Development”, then scroll down to the heading “Stormwater Requirements for New Development/ Redevelopment”, and click on the link to the Feasibility Report.)
I.1 General Approach

BASMAA's member agencies have collaborated to develop worksheets to assist project applicants and municipal staff in evaluating the feasibility and infeasibility of infiltration or rainwater harvesting and use, and determining the project's eligibility for Special Project LID treatment reduction credits. The steps in this process are shown in the flow chart (Figure I-1) and listed below:

- **Step 1:** Complete the Feasibility/Infeasibility of Infiltration and Rainwater Harvesting/Use section of the Stormwater Requirements Checklist, to evaluate whether the project may potentially fall into one of the following categories:

 a. Is it potentially a Special Project? (If so, complete the Special Projects Worksheet in Step 2)

 b. Is it infeasible to infiltrate the full C.3.d amount of runoff? (If not, complete the Infiltration Feasibility Worksheet in Step 2.)

 c. Is it infeasible to harvest and use the full C.3.d amount of runoff? (If not, complete the Rainwater Harvesting Feasibility Worksheet in Step 2.)

- **Step 2:** Either complete the applicable worksheet(s) or, if no further analysis is needed, go to Step 3d.

- **Step 3:** Depending on which additional worksheet(s) is/are completed, any of the following outcomes may result:

 a. If the project is a Special Project that receives 100 percent LID treatment reduction, up to 100 percent of the C.3.d amount of stormwater runoff may be treated with media filters and/or manufactured tree well filters.

 b. If infiltration of the C.3.d amount of runoff (or the remainder after deducting any Special Projects LID treatment reduction credit) is found to be feasible, then the project must infiltrate the required amount of runoff, unless it is harvested and used.

 c. If rainwater harvesting and use of the C.3.d amount of runoff (or the remainder after deducting any Special Projects LID treatment reduction credit) is found to be feasible, then the project must harvest and use the required amount of runoff, unless it is infiltrated.

 d. If the required amount of runoff cannot be infiltrated or harvested and used, implement biotreatment, except for any Special Project LID treatment reduction that may be allowed. Where conditions allow, the biotreatment measures should maximize infiltration.
Begin completing Stormwater Requirements Checklist Feasibility/Infeasibility section

Is the project a Special Project, or potentially a Special Project?

Yes: Complete the Special Projects Worksheet and follow instructions.

No: Is the project allowed to use non-LID treatment for 100% of the C.3.d amount of runoff?

Yes: Applicant is encouraged to use biotreatment but may treat C.3.d amount of runoff with media filter or proprietary tree well filter. Return to Stormwater Requirements Checklist Feasibility/Infeasibility section to prepare discussion of the feasibility/infeasibility of 100% LID treatment.

No: Do the site soils have saturated hydraulic conductivity of 1.6 or greater, or are the soils Type A or B?

Yes: Treat the C.3.d amount of runoff with infiltration, unless it is harvested and used.

No: Is it feasible to infiltrate the C.3.d amount of runoff?

Yes: Complete the Infiltration Feasibility Worksheet.

No: Is the project a Special Project that receives <100% LID treatment reduction credit?

Yes: Treat the C.3.d amount of runoff with biotreatment measure. Where conditions allow, design to maximize infiltration.

No: Is it feasible to harvest and use the C.3.d amount of runoff, unless it is infiltrated?

Yes: Complete the Rainwater Harvesting and Use Worksheet.

No: Return to Stormwater Requirements Checklist, Feasibility/Infeasibility section

Yes: Return to Stormwater Requirements Checklist, Feasibility/Infeasibility section

3b

Harvest and use the C.3.d amount of runoff, unless it is infiltrated.

2a

Complete the Special Projects Worksheet and follow instructions.

2b

Complete the Infiltration Feasibility Worksheet.

2c

Complete the Rainwater Harvesting and Use Worksheet.

3a

Is the project allowed to use non-LID treatment for 100% of the C.3.d amount of runoff?
I.2 Rainwater Harvesting/Use and Infiltration

Feasibility Screening Analysis Guidance

Many projects will complete only the feasibility screening analysis, included in Section E of the Stormwater Requirements Checklist, and will not have to complete the other worksheets related to feasibility. The screening analysis screens out from further evaluation projects that clearly cannot infiltrate or harvest and use the C.3.d amount of runoff. The screening analysis is organized around the following topics:

- Special Projects pre-screening,
- Infiltration feasibility screening,
- Recycled water use,
- Potential rainwater capture area for rainwater harvest and use calculation,
- Rainwater harvest/use feasibility screening,
- Additional feasibility analysis,
- Results of screening analysis.

Special Projects Pre-Screening

Question E.1 in the Feasibility/Infeasibility section of the Stormwater Requirements Checklist asks whether the project is a Special Project. If the project may meet the Special Projects criteria, complete the Special Projects Worksheet (download from www.flowstobay.org, click on “Businesses”, then “New Development” and scroll down to the heading, “Forms and Checklists for Implementing Stormwater Requirements”). If the project qualifies as a Special Project LID treatment may be required for a specified percentage of the C.3.d amount of stormwater runoff from the project. The following guidance applies if the project is found to be a Special Project:

- If the Special Project receives 100 percent LID treatment reduction, the project is allowed to treat the entire C.3.d amount of stormwater runoff with high flow-rate tree box filters or high flow rate media filters.
- If the Special Project receives less than 100 percent LID reduction, the project must evaluate the feasibility of infiltrating or harvesting and using the remaining C.3.d amount of stormwater runoff. To do this, answer the screening questions regarding infiltration and recycled water. Then fill out the Rainwater Harvesting and Use Feasibility Worksheet to evaluate the feasibility of treating the remaining percentage of the C.3.d amount of runoff with harvesting and use. Information about how to use the Rainwater Harvesting and Use Feasibility Form is provided in Section I.4 of this Appendix.
- As required in Provision C.3.e.vi.(2), a narrative discussion must be provided of the feasibility or infeasibility of 100 percent LID treatment.

Infiltration Feasibility Screening

Question E.2 in the Feasibility/Infeasibility section of the Stormwater Requirements Checklist evaluates how efficiently soils at the project site can infiltrate water. Where
If the soils report includes the saturated hydraulic conductivity (Ksat) for onsite soils, use this as the basis for determining feasibility of infiltration. The Feasibility Report found that infiltration of the C.3.d amount of runoff is infeasible where soils have a Ksat of less than 1.6 inches/hour.

If the site-specific soil report does not include the Ksat, but does include the soil type, then base the feasibility determination on soil type. If the soils at the project site consist of Type C or Type D, then infiltration of the C.3.d amount of runoff is infeasible.

If the above information is unavailable for the project site, then base the feasibility screening on the Ksat value shown on the map included in Attachment 3. You can also obtain Natural Resource Conservation Service soil survey data (the basis for the attached maps) at the following website: http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm. Where possible, this information should be confirmed with site-specific data.

Recycled Water Use

Question E.3 in the Feasibility/Infeasibility section of the Stormwater Requirements Checklist asks whether the project will install and use a recycled water system for non-potable water use. If this type of system will be used, then rainwater harvesting is considered to be infeasible, and you can skip to Section E.9. It would not be cost effective for a project to be required to install two plumbing systems for non-potable water. Recycled water is given priority over rainwater for non-potable water use because of the year-round availability and consistent quality of recycled water, the municipalities’ investments in recycled water infrastructure, and the requirement for wastewater treatment facilities to find reliable uses for recycled water.

Calculate Potential Rainwater Capture Area for Harvesting and Use Feasibility Screening

If a recycled water system is not used, further evaluation of rainwater harvesting/use feasibility is based on whether there is sufficient demand for the amount of rainwater that would potentially be captured by the project. The first step in this evaluation is to identify the potential rainwater capture area for the entire project area, by answering questions E.4.a through E.4.c on the Stormwater Requirements Checklist.

Please note that this part of the screening analysis should not be completed for Special Projects that receive less than 100 percent LID treatment reduction. The Feasibility/Infeasibility section of the Stormwater Requirements Checklist is not designed to take Special Projects treatment reductions into account. The Rainwater Harvesting and Use Feasibility Form does account for these reductions and should be used to evaluate the feasibility of harvest and use based on demand.

After the worksheet is completed for the entire project, if rainwater harvesting and use of the C.3.d amount of runoff is infeasible, AND, if the project includes one or more buildings with a
roof area of 10,000 square feet or more, then the potential rainwater capture area should be identified for each individual roof that has an area of 10,000 square feet or more.

- **Potential Rainwater Capture Area and the “50 Percent Rule.”** When evaluating the entire project, indicate in Question E.4.b whether the amount of any impervious surface that is replaced by the project is at least 50 percent, but less than 100 percent, of the existing impervious surface at the project site.
 - If the area of impervious surface to be replaced is at least 50 percent but less than 100 percent of the existing impervious surface, then the stormwater runoff from all the existing impervious surface will be included in the Potential Rainwater Capture Area. (This is referred to as “the 50 percent rule.”)
 - If the amount to be replaced is less than 50 percent of the existing impervious surface, then only the stormwater runoff from the new and/or replaced impervious surface will need to be treated.

- **Calculate the Potential Rainwater Capture Area:** After taking the “50 percent rule” into consideration, enter in Question E.4.c the total area (in square feet) that will need to receive stormwater treatment. This is the potential rainwater capture area. This result then needs to be converted to acres, since some criteria that will be used to evaluate rainwater harvesting feasibility are per acre of impervious surface.

Rainwater Harvest/Use Feasibility Screening

- **Feasibility of Irrigation use.** Respond to Question E.5 in the Stormwater Requirements Checklist if the project includes landscaping. This is based on a screening criterion derived from Table 11 in the Feasibility Report (included in Attachment 3 of this guidance), which presents ratios of “Effective Irrigated Area to Impervious Area” (EIATIA) for each of the rain gauge areas that were evaluated in the report. The multiplier provided in this question on the checklist applies to areas of turf landscaping in the Palo Alto rain gauge area, which is the lowest EIATIA for the county.

- **Residential toilet flushing.** Answer Question E.6.a in the Stormwater Requirements Checklist only for projects that consist entirely of residential use, and for the residential portion of mixed use projects that include some residential use. This question is based on a screening criterion derived from Attachment 2: Toilet-Flushing Demand for Harvested Rainwater. The threshold number of dwelling units per acre shown provided for residential toilet flushing specifically applies to toilet flushing demand in the Palo Alto rain gauge area, which is the lowest demand threshold for residential toilet flushing feasibility in the county.

- **Commercial/Institutional/Industrial Toilet Flushing.** Answer Question E.6.b only for projects that consist entirely of commercial and/or institutional and/or industrial use, and for the commercial portion of mixed commercial and residential use projects. This

3 The Feasibility Report indicated that rainwater harvesting/use feasibility would be determined on a drainage management area (DMA) basis. BASMAA has identified roofs of this size as the appropriate level of analysis for determining rainwater harvesting feasibility on a DMA basis.
question is based on screening criteria derived from California Plumbing Code building occupancy load factors and Table 10 in the Feasibility Report, which identifies the required toilet flushing demand based on employees per impervious acre (Table 10 is included in Attachment 3). The feasibility threshold for toilet flushing for commercial, institutional and industrial projects is provided in terms of square feet of interior floor area per acre of impervious surface. This threshold indicates that, at this ratio of interior floor area to impervious surface, rainwater harvesting and use for non-residential and non-school toilet flushing is feasible in the Palo Alto rain gauge area. The Palo Alto rain gauge threshold is the lowest demand threshold for non-residential and non-school toilet flushing feasibility in the county.

- **School Toilet Flushing.** Answer Question E.6.c only for school projects. This question is based on screening criteria derived from California Plumbing Code building occupancy load factors and Table 10 in the Feasibility Report (see Attachment 3), which identifies the required toilet flushing demand based on employees per impervious acre. The feasibility threshold for school toilet flushing is provided in terms of square feet of interior floor area per acre of impervious surface. This threshold indicates that, at this ratio of interior floor area to impervious surface, rainwater harvesting and use for school toilet flushing is feasible in the Palo Alto rain gauge area. The Palo Alto rain gauge threshold is the lowest demand threshold for school toilet flushing feasibility in the county.

- **Industrial Non-Potable Uses Other than Toilet Flushing.** Answer Question E.6.d only for industrial projects. If the project will include an industrial processing use for non-potable water, identify the demand for this use. This question is based on the required cistern volume and demand, for the maximum allowable drawdown time, to capture the C.3.d amount of runoff shown in Table 9 of the Feasibility Report (see Attachment 3). The required demand in gallons per day per acre of impervious area of the industrial project applies to the required demand in the Palo Alto rain gauge area, the lowest industrial non-potable water demand threshold for harvesting and use feasibility in the county.

 If the project’s industrial non-potable water demand is MORE than 2,900 gallons a day, refer to the curves from Appendix F of the Feasibility Report (see Attachment 3) to evaluate the feasibility of harvesting and using the C.3.d amount of runoff for industrial use. Find the page that shows curves corresponding to the closest rain gauge to your project. The applicant can select any combination of drawdown time and cistern size that achieves at least 80 percent capture of runoff on the Y-axis of the graphs. The required demand in gallons per day per impervious acre is calculated by dividing the cistern volume by the drawdown time (converted to days).

- **Toilet Flushing Demand for Mixed Commercial and Residential Use Projects.** Question E.6.e provides instructions to separately evaluate the commercial and residential portions of a mixed use project, as described above in the sections on Residential Toilet Flushing and on Commercial/Institutional/Industrial toilet flushing.
Additional Feasibility Analysis

Question E.7 in the Stormwater Requirements Checklist lists possible additional analyses that may be required, based on the results of the screening analysis. If further analysis is required, check all boxes that apply, based on the responses to the previous questions.

Results of Screening Analysis

Question E.8 in the Stormwater Requirements Checklist provides a list of possible outcomes of the infiltration feasibility screening analysis. Check all boxes that apply to determine whether, based on the screening analysis, infiltration of the C.3.d amount of runoff is feasible or infeasible.

Question E.9 in the Stormwater Requirements Checklist provides a list of possible outcomes of the rainwater harvesting and use feasibility screening analysis. Check all boxes that apply to determine whether, based on the screening analysis, harvesting and use of the C.3.d amount of runoff is feasible or infeasible.

Item E.10 states that biotreatment may be used if findings of infeasibility are made for both infiltration of the C.3.d amount of runoff and rainwater harvesting and use of the C.3.d amount of runoff.

I.3 Infiltration Feasibility Worksheet Guidance

Fill out this worksheet if soils at the project site have a Ksat of 1.6 or greater, or are Type A or B soils. This worksheet will help determine if conditions at the site would prohibit infiltration.

Feasibility of Infiltration Facilities

A “yes” answer to any of the questions from 2.1 through 2.3 indicates that site conditions prohibit the use of both infiltration measures (indirect infiltration, including unlined bioretention areas and infiltration trenches that are wider than they are deep) and infiltration devices (direct infiltration, including infiltration trenches and basins that are deeper than they are wide). A “yes” answer to any of these questions means that infiltration must be avoided altogether. In these situations, appropriate biotreatment systems may consist of a concrete-lined flow through planter, or a bioretention area with a waterproof liner. As soon as you answer “yes” to any of these questions, stop filling out the form, and indicate in Section 3 that infiltration is infeasible. If the answers to Questions 2.1 through 2.3 are all “no”, then the use of infiltration measures (indirect infiltration) is feasible. Continue filling out the form to determine whether the use of infiltration devices (direct infiltration) is feasible.

Feasibility of Infiltration Devices

A “yes” answer to any of the questions from 2.4 through 2.8 indicates that the use of infiltration devices (direct infiltration) is infeasible. Examples of infiltration devices include any infiltration trench or basin, dry well, or French drain that is deeper than it is wide. Requirements for infiltration devices (direct infiltration) are more stringent, because the design of infiltration devices causes stormwater runoff to bypass surface soils. This means
that groundwater resources are more vulnerable to contamination than would be the case if infiltration measures (indirect infiltration) were used.

A “yes” answer for any question from 2.4 through 2.8 would not change the feasibility of infiltration measures (indirect infiltration); it would mean only that the use of infiltration devices (direct infiltration) is prohibited.

I.4 Rainwater Harvesting/Use Feasibility Worksheet Guidance

Complete this worksheet if the project’s feasibility screening worksheet indicated that further analysis of rainwater harvesting and use is needed. Section 7 of the screening worksheet will indicate whether further analysis is needed for the entire project, or just one or more roofs that each individually have an area of 10,000 square feet or more. Fill out the rainwater harvesting and use worksheet separately for either the entire project, or for just one roof. The worksheet is organized around the following topics:

- Enter project data;
- Calculate area of self-treating areas, self-retaining areas, and areas contributing to self-retaining areas;
- Subtract credit for self-treating/self-retaining areas from area requiring treatment;
- Determine feasibility of use for toilet flushing based on demand;
- Determine feasibility of harvesting and use based on factors other than demand; and
- Results of feasibility determination.

The worksheet is provided in Excel, with pre-set formulas that perform various calculations automatically. The open cells shaded in blue are for you to enter data. Open cells without shading include the pre-set formulas.

RWH Feasibility Worksheet Section 1: Enter Project Data

The following data must be entered in this section and will form the basis for evaluating the feasibility of using the full C.3.d amount of runoff for toilet flushing:

- Project type,
- Number of dwelling units (for a residential or mixed use project),
- Square footage of non-residential interior floor area (for a non-residential or mixed use project), and
- Potential rain capture area (obtain from the screening worksheet).

If you are filling out this form for a project with a potential non-potable use of stormwater other than toilet flushing, skip sections 2 through 4, and go directly to Section 5.

RWH Feasibility Section 2: Calculate self-treating and self-retaining areas

You may exclude the following from the calculation of the potential rain capture area: 1) runoff from self-treating areas; 2) runoff from self-retaining areas; 3) the areas of impervious surface that drain to self-retaining areas. This is because, if the project includes such areas, they have been designed to infiltrate the C.3.d amount of runoff. In Section 2 of the form,
enter the area (in square feet) of the project that consists of self-treating or self-retaining areas, and the impervious surface area that drains to self-retaining areas.

RWH Feasibility Section 3: Subtract self-treating and self-retaining areas

This section includes pre-set formulas that will automatically subtract from the area that is being evaluated (adjusted to account for any Special Project LID treatment reduction) the total square footage of self-treating and self-retaining areas, as well as the square footage of impervious surface that drain to self-retaining areas. The result is the potential rainwater capture area. A pre-set formula then converts the potential rainwater capture area from square feet to acres.

RWH Feasibility Section 4: Feasibility of use for toilet flushing based on demand

- **Steps 4.1 and 4.2: Identify project density**: In these steps, you will identify (for residential projects) the dwelling units per acre of potential rainwater capture area. For non-residential projects, you will identify the non-residential interior floor area (in square feet) per acre of potential rain capture area. These ratios will be used to represent the anticipated toilet flushing demand for the project. The worksheet includes pre-set formulas to help you do this. Please note: If you are evaluating a mixed use project, do not use these pre-set formulas. For mixed use projects, evaluate the residential toilet flushing demand based on the dwelling units per acre for the residential portion of the project (using a prorated acreage, based on the percentage of the project dedicated to residential use). Then evaluate the commercial toilet flushing demand per acre for the commercial portion of the project (using a prorated acreage, based on the percentage of the project dedicated to commercial use).

- **Steps 4.3 and 4.4: Identify applicable density thresholds**: In these steps, you will identify the density thresholds at which there would be sufficient toilet flushing demand to use the full C.3.d amount of stormwater runoff, for the applicable rain gauge area. Refer to the tables in Attachment 2 to locate the applicable density threshold for the rain gauge that is located nearest to your project. The density threshold for residential projects is in terms of dwelling units per impervious acre. The density threshold for non-residential projects is in terms of interior floor area (in square feet) per acre of impervious surface.

- **Steps 4.5 and 4.6: Feasibility of use based on toilet flushing demand**: In these steps, you will compare the project density(ies) from steps 4.1 and/or 4.2 with the density thresholds from steps 4.3 and 4.4. If the project density(ies) LESS than the threshold(s), then there is sufficient demand to harvest and use the C.3.d amount of runoff for toilet flushing. If the answer to the applicable question(s) is yes, then rainwater harvesting and use is infeasible, and you can skip to Section 6. If either question results in a “no” answer, then continue to Section 5 to see if there are other constraints that would make it infeasible.

RWH Feasibility Worksheet: Section 5: Factors other than demand
Complete this section if there was a “yes” answer to Questions 4.5 and/or 4.6, or if you are evaluating non-toilet flushing uses of rainwater. The questions in this section will help you determine whether there are site-specific factors, such as steep slope or lack of available space for a cistern, which would make rainwater harvesting and use infeasible.

1.5 Worksheets and Attachments

The following pages include the worksheets and attachments listed below. To download electronic versions of the worksheets, visit www.flowstobay.org, click on “Business”, then “New Development”, and scroll down to the section titled “Stormwater Requirements for New Development/Redevelopment:”.

- Infiltration Feasibility Worksheet
- Rainwater Harvesting and Use Feasibility Worksheet
- Attachment 1: Glossary
- Attachment 2: Toilet-Flushing Demand for Harvested Rainwater
- Attachment 3: Excerpts from the Feasibility Report (Map of Soil Hydraulic Conductivity and Rain Gauge Areas, Tables 8 through 11 and curves from the report’s Appendix F)
Complete this worksheet for C.3 Regulated Projects* for which the soil hydraulic conductivity (Ksat) exceeds 1.6. Use this checklist to determine the feasibility of treating the C.3.d amount of runoff* with infiltration. Where it is infeasible to treat the C.3.d amount of runoff* with infiltration or rainwater harvesting and use, stormwater may be treated with biotreatment* measures. See Glossary (Attachment 1) for definitions of terms marked with an asterisk (*).

1. Enter Project Data.
 1.1 Project Name: ____________________________
 1.2 Project Address: ____________________________
 1.3 Applicant/Agent Name: ____________________________
 1.4 Applicant/Agent Address: ____________________________
 1.5 Applicant/Agent Email: ____________________________

2. Evaluate infiltration feasibility.

Check "Yes" or "No" to indicate whether the following conditions apply to the project. If "Yes" is checked for any question, then infiltration is infeasible, and you can continue to Item 3.1 without answering any further questions in Section 2. If all of the answers in Section 2 are “No,” then infiltration is feasible, and you may design infiltration facilities* for the area from which runoff must be treated. Items 2.1 through 2.3 address the feasibility of using infiltration facilities*, as well as the potential need to line bioretention areas.

2.1 Would infiltration facilities at this site conflict with the location of existing or proposed underground utilities or easements, or would the siting of infiltration facilities at this site result in their placement on top of underground utilities, or otherwise oriented to underground utilities, such that they would discharge to the utility trench, restrict access, or cause stability concerns? (If yes, attach evidence documenting this condition.)

2.2 Is there a documented concern that there is a potential on the site for soil or groundwater pollutants to be mobilized? (If yes, attach documentation of mobilization concerns.)

2.3 Are geotechnical hazards present, such as steep slopes, areas with landslide potential, soils subject to liquefaction, or would an infiltration facility need to be built less than 10 feet from a building foundation or other improvements subject to undermining by saturated soils? (If yes, attach documentation of geotechnical hazard.)

Respond to Questions 2.4 through 2.8 only if the project proposes to use an infiltration device*.

2.4 Do local water district or other agency’s policies or guidelines regarding the locations where infiltration may occur, the separation from seasonal high groundwater, or setbacks from potential sources of pollution prevent infiltration devices from being implemented at this site? (If yes, attach evidence documenting this condition.)

2.5 Would construction of an infiltration device require that it be located less than 100 feet away from a septic tank, underground storage tank with hazardous materials, or other potential underground source of pollution? (If yes, attach evidence documenting this claim.)

* See Glossary (Attachment 1) for definitions.
Infiltration Feasibility Worksheet

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Is there a seasonal high groundwater table or mounded groundwater that would be within 10 feet of the base of an infiltration device* constructed on the site? (If yes, attach documentation of high groundwater.)</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Are there land uses that pose a high threat to water quality – including but not limited to industrial and light industrial activities, high vehicular traffic (i.e., 25,000 or greater average daily traffic on a main roadway or 15,000 or more average daily traffic on any intersecting roadway), automotive repair shops, car washes, fleet storage areas, or nurseries? (If yes, attach evidence documenting this claim.)</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Is there a groundwater production well within 100 feet of the location where an infiltration device would be constructed? (If yes, attach map showing the well.)</td>
<td></td>
</tr>
</tbody>
</table>

3. Results of Feasibility Determination

<table>
<thead>
<tr>
<th></th>
<th>Infeasible</th>
<th>Feasible</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Based on the results of the Section 2 feasibility analysis, infiltration is (check one):</td>
<td></td>
</tr>
</tbody>
</table>

→ If "FEASIBLE" is indicated for Item 3.1, then the amount of stormwater requiring treatment must be treated with infiltration (or rainwater harvest and use, if feasible). **Infiltration facilities*** may be designed for the area from which runoff must be treated.

→ If “INFEASIBLE” is checked for item 3.1, then the applicant may use appropriately designed biotreatment facilities for compliance with C.3 treatment requirements. The applicant is encouraged to maximize infiltration of stormwater if site conditions allow.

Name of Applicant (Print)

Name of Applicant (Sign)

Date

* See Glossary (Attachment 1) for definitions.

San Mateo Countywide Water Pollution Prevention Program

FINAL Version November 9, 2011
Complete this worksheet for all **C.3 Regulated Projects** for which the project density exceeds the **screening density** in the Infiltration/Harvesting and Use Feasibility Screening Worksheet. Use this worksheet to determine the feasibility of treating the **C.3d amount of runoff** with rainwater harvesting and use for indoor, non-potable water uses. Where it is infeasible to treat the C.3d amount of runoff with either harvesting and use or infiltration, stormwater may be treated with **biotreatment** measures. See Glossary (Attachment 1) for definitions of terms marked with an asterisk (*).

Complete this worksheet for the entire project area. If completing this form shows that rainwater harvesting and use is infeasible for the entire project, and the project includes one or more buildings that each have an individual roof area of 10,000 sq. ft. or more, then complete Sections 4 and 5 of this form for each of these buildings (in this case, complete only the sections of the form that make sense for the roof area evaluation).

1. Enter Project Data.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Project Name:</td>
</tr>
<tr>
<td>1.2</td>
<td>Project Address:</td>
</tr>
<tr>
<td>1.3</td>
<td>Applicant/Agent Name:</td>
</tr>
<tr>
<td>1.4</td>
<td>Applicant/Agent Address:</td>
</tr>
</tbody>
</table>

(For projects with a potential non-potable water use other than toilet flushing, skip to Question 5.1)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>Project Type:</td>
</tr>
<tr>
<td>1.6</td>
<td>If residential or mixed use, enter # of dwelling units:</td>
</tr>
<tr>
<td></td>
<td>Enter square footage of non-residential interior floor area:</td>
</tr>
<tr>
<td>1.7</td>
<td>Total area being evaluated (entire project or individual roof with an area ≥ 10,000 sq.ft.):</td>
</tr>
<tr>
<td>1.8</td>
<td>If it is a Special Project*, indicate the percentage of LID treatment reduction:</td>
</tr>
<tr>
<td></td>
<td>(Item 1.8 applies only to entire project evaluations, not individual roof area evaluations.)</td>
</tr>
<tr>
<td>1.9</td>
<td>Total area being evaluated adjusted for Special Project LID treatment reduction credit:</td>
</tr>
<tr>
<td></td>
<td>(This is the total area being evaluated that requires LID treatment.)</td>
</tr>
</tbody>
</table>

2. Calculate Area of Self-Treating Areas, Self-Retaining Areas, and Areas Contributing to Self-Retaining Areas.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Enter square footage of any self-treating areas in the area that is being evaluated:</td>
</tr>
<tr>
<td>2.2</td>
<td>Enter square footage of any self-retaining areas in the area that is being evaluated:</td>
</tr>
<tr>
<td>2.3</td>
<td>Enter the square footage of areas contributing runoff to self-retaining area:</td>
</tr>
<tr>
<td>2.4</td>
<td>TOTAL of Items 2.1, 2.2, and 2.3:</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Subtract the TOTAL in Item 2.4 from the adjusted area being evaluated (Item 1.9). This is the potential rainwater capture area*:</td>
</tr>
<tr>
<td>3.2</td>
<td>Convert the potential rainwater capture area (Item 3.1) from square feet to acres.</td>
</tr>
</tbody>
</table>

4. Determine feasibility of use for toilet flushing based on demand

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Project's dwelling units per acre of potential rainwater capture area (Divide the number in 1.5 by the number in 3.3).</td>
</tr>
<tr>
<td>4.2</td>
<td>Non-residential interior floor area per acre of potential rain capture area (Divide the number in 1.6 by the number in 3.3).</td>
</tr>
</tbody>
</table>

Note: formulas in Items 4.1 and 4.2 are set up, respectively, for a residential or a non-residential project. Do not use these pre-set formulas for mixed use projects. For **mixed use projects**, evaluate the residential toilet flushing demand based on the dwelling units per acre for the residential portion of the project (use a prorated acreage, based on the percentage of the project dedicated to residential use). Then evaluate the commercial toilet flushing demand per acre for the commercial portion of the project (use a prorated acreage, based on the percentage of the project dedicated to commercial use).
Rainwater Harvesting and Use Feasibility Worksheet

Refer to the applicable countywide table in Attachment 2. Identify the number of dwelling units per impervious acre needed in your Rain Gauge Area to provide the toilet flushing demand required for rainwater harvest feasibility.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>dwelling units/acre</td>
<td>Identify in Table 2.3.1</td>
</tr>
<tr>
<td>4.4</td>
<td>int. non-res. floor area/acre</td>
<td>Identify in Table 2.3.2</td>
</tr>
</tbody>
</table>

Check "Yes" or "No" to indicate whether the following conditions apply. If "Yes" is checked for any question, then rainwater harvesting and use is infeasible. As soon as you answer "Yes", you can skip to Item 6.1. If "No" is checked for all items, then rainwater harvesting and use is feasible and you must harvest and use the C.3.d amount of stormwater, unless you infiltrate the C.3.d amount of stormwater.

4.5 Is the project's number of dwelling units per acre of potential rainwater capture area (listed in Item 4.1) LESS than the number identified in Item 4.3?

- [] Yes
- [] No

4.6 Is the project's square footage of non-residential interior floor area per acre of potential rainwater capture area (listed in Item 4.2) LESS than the number identified in Item 4.4?

- [] Yes
- [] No

5. Determine feasibility of rainwater harvesting and use based on factors other than demand.

5.1 Does the requirement for rainwater harvesting and use at the project conflict with local, state, or federal ordinances or building codes?

- [] Yes
- [] No

5.2 Would the technical requirements cause the harvesting system to exceed 2% of the Total Project Cost, or has the applicant documented economic hardship in relation to maintenance costs? (If so, attach an explanation.)

- [] Yes
- [] No

5.3 Do constraints, such as a slope above 10% or lack of available space at the site, make it infeasible to locate on the site a cistern of adequate size to harvest and use the C.3.d amount of water? (If so, attach an explanation.)

- [] Yes
- [] No

5.4 Are there geotechnical/stability concerns related to the surface (roof or ground) where a cistern would be located that make the use of rainwater harvesting infeasible? (If so, attach an explanation.)

- [] Yes
- [] No

5.5 Does the location of utilities, a septic system and/or heritage trees limit the placement of a cistern on the site to the extent that rainwater harvesting is infeasible? (If so, attach an explanation.)

- [] Yes
- [] No

Note 1: It is assumed that projects with significant amounts of landscaping will either treat runoff with landscape dispersal (self-treating and self-retaining areas) or will evaluate the feasibility of harvesting and using rainwater for irrigation using the curves in Appendix F of the LID Feasibility Report.

6. Results of Feasibility Determination

6.1 Based on the results of the feasibility analysis in Item 4.4 and Section 5, rainwater harvesting/use is

- [] Infeasible
- [] Feasible

If "FEASIBLE" is indicated for Item 6.1 the amount of stormwater requiring treatment must be treated with harvesting/use, unless it is infiltrated into the soil.

If "INFEASIBLE" is checked for Item 6.1, then the applicant may use appropriately designed **bioretention** facilities for compliance with C.3 treatment requirements. If Ksat > 1.6 in./hr., and infiltration is unimpeded by subsurface conditions, then the bioretention facilities are predicted to infiltrate 80% or more average annual runoff. If Ksat < 1.6, maximize infiltration of stormwater by using bioretention if site conditions allow, and remaining runoff will be discharged to storm drains via facility underdrains. If site conditions preclude infiltration, a lined bioretention area or flow-through planter may be used.

Applicant (Print)

Applicant (Sign) Date

1. Bioretention facilities designed to maximize infiltration with a raised underdrain may also be called **bioinfiltration facilities**.

* See definitions in Glossary (Attachment 1)
Bioinfiltration Area

A type of low development treatment measure designed to have a surface ponding area that allows for evapotranspiration, and to filter water through 18 inches of engineered biotreatment soil. After the water filters through the engineered soil, it encounters a 12-inch layer of rock in which an underdrain is typically installed. If the underlying soils have a saturated hydraulic conductivity rate of 1.6” per hour or greater, then the C.3.d amount of runoff is treated by evapotranspiration and infiltration. If the soils have a lower hydraulic conductivity rate, then the bioinfiltration area treats stormwater with evapotranspiration, some infiltration, and the remaining amount of the C.3.d amount of runoff is filtered and released into the underdrain. The difference between a bioinfiltration area and a bioretention area is that the bioinfiltration area is never lined with an impermeable layer; whereas, a bioretention area may be lined or unlined.

Bioretention Area

A type of low development treatment measure designed to have a surface ponding area that allows for evapotranspiration, and to filter water through 18 inches of engineered biotreatment soil. After the water filters through the engineered soil, it encounters a 12-inch layer of rock in which an underdrain is typically installed. If the underlying soils have a saturated hydraulic conductivity rate of 1.6” per hour or greater, then the C.3.d amount of runoff is treated by evapotranspiration and infiltration. If the soils have a lower hydraulic conductivity rate, or if infiltration is prohibited and the bioretention area is lined with an impermeable layer, then the bioretention area treats stormwater with evapotranspiration, some or no infiltration, and the remaining amount of the C.3.d amount of runoff is filtered and released into the underdrain. The difference between a bioinfiltration area and a bioretention area is that the bioinfiltration area is never lined with an impermeable layer; whereas, a bioretention area may be lined or unlined.

Biotreatment

A type of low impact development treatment allowed under Provision C.3.c of the MRP*, if infiltration, evapotranspiration and rainwater harvesting and use are infeasible. As required by Provision C.3.c.i(2)(vi), biotreatment systems shall be designed to have a surface area no smaller than what is required to accommodate a 5 inches/hour stormwater runoff surface loading rate and shall use biotreatment soil as specified in the biotreatment soil specifications approved by the Regional Water Board, or equivalent.

C.3 Regulated Projects:

Development projects as defined by Provision C.3.b.ii of the MRP*. This includes public and private projects that create and/or replace 10,000 square feet or more of impervious surface, and restaurants, retail gasoline outlets, auto service facilities, and uncovered parking lots (stand-alone or part of another use) that create and/or replace 5,000 square feet or more of impervious surface. Single family homes that are not part of a larger plan of development are specifically excluded.

C.3.d Amount of Runoff

The amount of stormwater runoff from C.3 Regulated Projects that must receive stormwater treatment, as described by hydraulic sizing criteria in Provision C.3.d of the MRP*.

Heritage Tree

An individual tree of any size or species given the ‘heritage tree’ designation as defined by the municipality’s tree ordinance or other section of the municipal code.

Infiltration Devices

Infiltration facilities that are deeper that they are wide and designed to infiltrate stormwater runoff into the subsurface and, as designed, bypass the natural groundwater protection afforded by surface soil. These devices include dry wells, injection wells and infiltration trenches (includes French drains).

Infiltration Facilities

A term that refers to both infiltration devices and measures.

Infiltration Measures

Infiltration facilities that are wider than they are deep (e.g., bioinfiltration, infiltration basins and shallow wide infiltration trenches and dry wells).

Low Impact Development (LID) Treatment

Removal of pollutants from stormwater runoff using the following types of stormwater treatment measures: rainwater harvesting and use, infiltration, evapotranspiration, or, where these are infeasible, biotreatment.
Municipal Regional Stormwater Permit (MRP)

The municipal stormwater NPDES permit under which discharges are permitted from municipal separate storm sewer systems throughout Alameda County and the other NPDES Phase I jurisdictions within the San Francisco Bay Region.

Potential Rainwater Capture Area

The impervious area from which rainwater may be potentially be captured, if rainwater harvesting and use were implemented for a project. If the entire site is evaluated for rainwater harvesting and use feasibility, this consists of the impervious area of the proposed project; for redevelopment projects that replace 50% or more of the existing impervious surface, it also includes the areas of existing impervious surface that are not modified by the project. If only a roof area is evaluated for rainwater harvesting and use feasibility, the potential rainwater capture area consists only of the applicable roof area.

Screening Density

A threshold of density (e.g., number of units or interior floor area) per acre of impervious surface, associated with a certain potential demand for non-potable water, for C.3 regulated projects. The screening density varies according to location (see Attachment 2.) If the screening density is met or exceeded, the Rainwater Harvesting and Use Feasibility Worksheet must be completed for the project.

Self-Retaining Area

A portion of a development site designed to retain the first one inch of rainfall (by ponding and infiltration and/or evapotranspiration) without producing stormwater runoff. Self-retaining areas must have at least a 2:1 ratio of contributing area to a self-retaining area and a 3” ponding depth. Self-retaining areas may include graded depressions with landscaping or pervious pavement. Areas that Contribute Runoff to Self-Retaining Areas are impervious or partially pervious areas that drain to self-retaining areas.

Self-Treating Area

A portion of a development site in which infiltration, evapotranspiration and other natural processes remove pollutants from stormwater. Self-treating areas may include conserved natural open areas, areas of landscaping, green roofs and pervious pavement. Self-treating areas treat only the rain falling on them and do not receive stormwater runoff from other areas.

Special Projects

Certain types of smart growth, high density and transit oriented development projects that are allowed, under Provision C.3.e.ii of the MRP, to receive LID treatment reductions. The specific development project types will be described in an amendment to the MRP, anticipated in Fall 2011.

Total Project Cost

Total project cost includes the construction (labor) and materials cost of the physical improvements proposed; however, it does not include land, transactions, financing, permitting, demolition, or off-site mitigation costs.
LID Feasibility Worksheet
Attachment 2: Toilet-Flushing Demand Required for Rainwater Harvesting Feasibility per Impervious Acre (IA)\(^1,2\)

Table 1 – San Mateo County:

<table>
<thead>
<tr>
<th>Rain Gauge(^3)</th>
<th>Required Demand (gal/day/IA)(^4)</th>
<th>Residential</th>
<th>Office/Retail(^5)</th>
<th>Schools(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. of residents per IA(^7)</td>
<td>Dwelling Units per IA(^8)</td>
<td>Employees per IA(^9)</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>2,900</td>
<td>340</td>
<td>124</td>
<td>420</td>
</tr>
<tr>
<td>San Francisco</td>
<td>4,600</td>
<td>530</td>
<td>193</td>
<td>670</td>
</tr>
<tr>
<td>SF Oceanside</td>
<td>4,300</td>
<td>500</td>
<td>182</td>
<td>620</td>
</tr>
</tbody>
</table>

Notes:
1. Demand thresholds obtained from the “Harvest and Use, Infiltration and Evapotranspiration Feasibility/Infeasibility Criteria Report” (LID Feasibility Report) submitted to the Regional Water Board on May 1, 2011.
2. Toilet flushing demands assume use of low flow toilets per the California Green Building Code.
3. See Attachment 3 to identify the rain gauge that corresponds to the project site.
4. Required demand per acre of impervious area to achieve 80% capture of the C.3.d runoff volume with the maximum allowable drawdown time for cistern of 50,000 gallons or less, from Table 9 of the LID Feasibility Report.
5. “Office/Retail” includes the following land uses: office or public buildings, hospitals, health care facilities, retail or wholesale stores, and congregate residences.
6. “Schools” includes day care, elementary and secondary schools, colleges, universities, and adult centers.
7. Residential toilet flushing demand identified in Table 10 of the LID Feasibility Report.
8. Residential toilet flushing demand divided by the countywide average number of persons per household (US Census data reported on www.abag.org), as follows: Alameda County: 2.71 persons per household; Santa Clara County: 2.92; San Mateo County: 2.74; Contra Costa County: 2.72; Solano County: 2.90.
9. Office/retail employee toilet flushing demand identified in Table 10 of the LID Feasibility Report.
10. Interior floor area required for rainwater harvest and use feasibility per acre of impervious area is based on the number of employees in Column 5 multiplied by an occupant load factor of 200 square feet per employee (reference: 2010 California Plumbing Code, Chapter 4, Plumbing Fixtures and Fitting Fixtures, Table A, page 62.)
11. School employee toilet flushing demand identified in Table 10 of the LID Feasibility Report. Each school employee represents 1 employee and 5 “visitors” (students and others).
12. Interior floor area required for rainwater harvest and use feasibility per acre of impervious area is based on the number of employees in Column 7 multiplied by 6 to account for visitors, then multiplied by an occupant load factor of 50 square feet per employee (reference: 2010 California Plumbing Code).
LID Feasibility Worksheet

Attachment 3:

Excerpts from BASMAA’s Feasibility/Infeasibility Criteria Report

- Figure A6: Saturated Hydraulic Conductivity (Ksat) and Precipitation Polygons, San Mateo County, CA
- Table 8: Required Cistern Volume and Demand per Acre of Impervious Area to Achieve 80% Capture with a 48-hour Drawdown Time
- Table 9: Required Cistern Volume and Demand per Acre of Impervious Area to Achieve 80% Capture with the Longer Drawdown Time Allowable (Minimum Demand) for Cistern of 50,000 Gallons or Less
- Table 10: TUTIA Ratios for Typical Land Uses for Rain Gauges Analyzed
- Table 11: EIATIA Ratios for Rain Gauges Analyzed
- Figure F8: Percent Capture Achieved by BMP Storage Volume with Various Drawdown Times for 1 Acre, 100% Impervious Tributary Area: Palo Alto
- Figure F9: Percent Capture Achieved by BMP Storage Volume with Various Drawdown Times for 1 Acre, 100% Impervious Tributary Area: San Francisco Airport
- Figure F10: Percent Capture Achieved by BMP Storage Volume with Various Drawdown Times for 1 Acre, 100% Impervious Tributary Area: San Francisco Oceanside
Saturated Hydraulic Conductivity (Ksat) and Precipitation Polygons
San Mateo County, CA

Legend
- Precipitation Gage
- Precipitation Gage Polygon
- Urban Areas

Saturated Hydraulic Conductivity (in/hr)
- 0.0 - 0.1
- 0.1 - 0.2
- 0.2 - 0.3
- 0.3 - 0.4
- 0.4 - 0.5
- 0.5 - 0.7
- 0.7 - 0.9
- 0.9 - 1.1
- 1.1 - 1.3
- 1.3 - 1.5
- > 1.5

Note: Saturated hydraulic conductivities (Ksat) presented are NRCS "representative" values in the absence of complete coverage of "low" value.
Table 8: Required Cistern Volume and Demand per Acre of Impervious Area to Achieve 80% Capture with a 48-hour Drawdown Time

<table>
<thead>
<tr>
<th>Rain Gauge</th>
<th>Drawdown Time (hr.)</th>
<th>Required Cistern Size (gallons)</th>
<th>Required Demand (gal/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>48</td>
<td>23,000</td>
<td>11,500</td>
</tr>
<tr>
<td>Brentwood</td>
<td>48</td>
<td>19,000</td>
<td>9,500</td>
</tr>
<tr>
<td>Dublin</td>
<td>48</td>
<td>21,000</td>
<td>10,500</td>
</tr>
<tr>
<td>Hayward</td>
<td>48</td>
<td>23,500</td>
<td>11,750</td>
</tr>
<tr>
<td>Lake Solano</td>
<td>48</td>
<td>29,000</td>
<td>14,500</td>
</tr>
<tr>
<td>Martinez</td>
<td>48</td>
<td>23,000</td>
<td>11,500</td>
</tr>
<tr>
<td>Morgan Hill</td>
<td>48</td>
<td>25,500</td>
<td>12,750</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>48</td>
<td>16,500</td>
<td>8,250</td>
</tr>
<tr>
<td>San Francisco</td>
<td>48</td>
<td>20,000</td>
<td>10,000</td>
</tr>
<tr>
<td>San Francisco Oceanside</td>
<td>48</td>
<td>19,000</td>
<td>9,500</td>
</tr>
<tr>
<td>San Jose</td>
<td>48</td>
<td>15,000</td>
<td>7,500</td>
</tr>
</tbody>
</table>

If a longer drawdown time (and lower minimum demand) is desired, Table 9 includes the maximum drawdown time allowable to achieve 80 percent capture for a cistern sized at 50,000 gallons or less per acre of impervious area, along with the required cistern sizes and daily demands.

Table 9: Required Cistern Volume and Demand per Acre of Impervious Area to Achieve 80% Capture with the Longer Drawdown Time Allowable (Minimum Demand) for Cistern of 50,000 Gallons or Less

<table>
<thead>
<tr>
<th>Rain Gauge</th>
<th>Drawdown Time (hr.)</th>
<th>Required Cistern Size (gallons)</th>
<th>Required Demand (gal/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>180</td>
<td>44,000</td>
<td>5,900</td>
</tr>
<tr>
<td>Brentwood</td>
<td>240</td>
<td>42,000</td>
<td>4,200</td>
</tr>
<tr>
<td>Dublin</td>
<td>240</td>
<td>41,000</td>
<td>4,100</td>
</tr>
<tr>
<td>Hayward</td>
<td>240</td>
<td>47,500</td>
<td>4,800</td>
</tr>
<tr>
<td>Lake Solano</td>
<td>120</td>
<td>45,000</td>
<td>9,000</td>
</tr>
<tr>
<td>Martinez</td>
<td>180</td>
<td>44,000</td>
<td>5,900</td>
</tr>
<tr>
<td>Morgan Hill</td>
<td>180</td>
<td>49,000</td>
<td>6,500</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>360</td>
<td>44,000</td>
<td>2,900</td>
</tr>
<tr>
<td>San Francisco</td>
<td>240</td>
<td>45,500</td>
<td>4,600</td>
</tr>
<tr>
<td>San Francisco Oceanside</td>
<td>240</td>
<td>43,000</td>
<td>4,300</td>
</tr>
<tr>
<td>San Jose</td>
<td>480</td>
<td>48,000</td>
<td>2,400</td>
</tr>
</tbody>
</table>
Table 10: TUTIA Ratios for Typical Land Uses for Rain Gauges Analyzed

<table>
<thead>
<tr>
<th>Rain Gauge</th>
<th>Required Demand¹ (gal/day)</th>
<th>Toilet Users per Impervious Acre (TUTIA)²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Residential</td>
</tr>
<tr>
<td></td>
<td>Assumed Per Capita Use per Day (gal/day) ³</td>
<td></td>
</tr>
<tr>
<td>Berkeley</td>
<td>5,900</td>
<td>18</td>
</tr>
<tr>
<td>Brentwood</td>
<td>4,200</td>
<td>320</td>
</tr>
<tr>
<td>Dublin</td>
<td>4,100</td>
<td>230</td>
</tr>
<tr>
<td>Hayward</td>
<td>4,800</td>
<td>260</td>
</tr>
<tr>
<td>Lake Solano</td>
<td>9,000</td>
<td>490</td>
</tr>
<tr>
<td>Martinez</td>
<td>5,900</td>
<td>320</td>
</tr>
<tr>
<td>Morgan Hill</td>
<td>6,500</td>
<td>350</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>2,900</td>
<td>160</td>
</tr>
<tr>
<td>San Francisco</td>
<td>4,600</td>
<td>250</td>
</tr>
<tr>
<td>San Francisco Oceanside</td>
<td>4,300</td>
<td>230</td>
</tr>
<tr>
<td>San Jose</td>
<td>2,400</td>
<td>130</td>
</tr>
</tbody>
</table>

Footnotes:

¹ For a 50,000 or less gallon tank to achieve 80 percent capture within maximum allowable drawdown time (Table 9).
² The TUTIA ratios are based on employee toilet users per impervious acre. These ratios were calculated using the daily toilet and urinal water usage from Table 5, which are per employee and encompass usage by visitors and students within the daily demand (assumes about 5 students per school employee).
³ CGBC = California Green Building Code Requirements water usage accounting for water conservation.
⁴ From Table 5, Toilet and Urinal Water Usage per Resident or Employee.

EIATA Ratios

Comparing the required daily demands for rainwater harvesting systems for both 48-hour drawdown times and maximum drawdown times to daily demands per irrigated acre, it becomes evident that the required demands are many times larger than irrigation demands. This can be translated into an ‘Effective Irrigated Area to Impervious Area’ (EIATIA) ratio by dividing the required rainwater harvesting system demand by the daily irrigation demand (shown in Table 7). Since both demands are calculated on a per acre basis, the EIATIA ratio represents the number of acres of irrigated area needed per acre of impervious surface to meet the demand needed for 80 percent capture. EIATIA ratios were analyzed for the rain gauges used for analysis and the evapotranspiration data listed in Table F-1. These ratios, as well as the required total imperviousness (assuming a project includes the impervious tributary area and the irrigated area only) are included in Table 11.
Table 11: EIATIA Ratios for Rain Gauges Analyzed

<table>
<thead>
<tr>
<th>Rain Gauge</th>
<th>Required Daily Demand¹ (gal/day)</th>
<th>ET Data Location²</th>
<th>Conservation Landscaping</th>
<th>Turf Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Demand per Irrigated Acre³</td>
<td>EIATIA</td>
</tr>
<tr>
<td>Berkeley</td>
<td>5,900</td>
<td>Oakland</td>
<td>420</td>
<td>14.0</td>
</tr>
<tr>
<td>Brentwood</td>
<td>4,200</td>
<td>Brentwood</td>
<td>420</td>
<td>10.0</td>
</tr>
<tr>
<td>Dublin</td>
<td>4,100</td>
<td>Pleasanton</td>
<td>430</td>
<td>9.5</td>
</tr>
<tr>
<td>Hayward</td>
<td>4,800</td>
<td>Fremont</td>
<td>520</td>
<td>9.2</td>
</tr>
<tr>
<td>Lake Solano</td>
<td>9,000</td>
<td>Fairfield</td>
<td>420</td>
<td>21.4</td>
</tr>
<tr>
<td>Martinez</td>
<td>5,900</td>
<td>Martinez</td>
<td>380</td>
<td>15.5</td>
</tr>
<tr>
<td>Morgan Hill</td>
<td>6,500</td>
<td>Morgan Hill</td>
<td>500</td>
<td>13.0</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>2,900</td>
<td>Redwood City</td>
<td>450</td>
<td>6.4</td>
</tr>
<tr>
<td>San Francisco</td>
<td>4,600</td>
<td>San Francisco</td>
<td>360</td>
<td>12.8</td>
</tr>
<tr>
<td>San Francisco Oceanside</td>
<td>4,300</td>
<td>San Francisco</td>
<td>360</td>
<td>11.9</td>
</tr>
<tr>
<td>San Jose</td>
<td>2,400</td>
<td>San Jose</td>
<td>470</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Footnotes:

¹ To achieve 80 percent capture within maximum allowable drawdown time (Table 9).
² Closest location selected, from Table F-1.
³ From Table 7.

3.3.3 Summary

In summary, TUTIA ratios indicate that dense land uses would be required to provide the needed demand to make rainwater harvesting feasible in the MRP area. A project must have sufficiently high toilet flushing uses to achieve 80 percent capture within the maximum allowable drawdown time (see Table 9 for maximum allowable drawdown time for a 50,000 gallon tank or less). For instance, approximately 280 to 1,050 residential toilet users (roughly 90 – 130 dwelling units per acre⁵) are required, depending on location, per impervious acre to meet the demand needed for 80 percent capture with the maximum allowable drawdown time and CA Green Building Code flush requirements. Meeting the demand requirements would entail a very dense housing

⁵ Assuming three residents per dwelling unit.
Figure F-8: Percent Capture Achieved by BMP Storage Volume with Various Drawdown Times for 1-Acre, 100% Impervious Tributary Area - Palo Alto
Figure F-9: Percent Capture Achieved by BMP Storage Volume with Various Drawdown Times for 1-Acre, 100% Impervious Tributary Area - San Francisco
Figure F-10: Percent Capture Achieved by BMP Storage Volume with Various Drawdown Times for 1-Acre, 100% Impervious Tributary Area - San Francisco Oceanside
Special Projects

Table of Contents

J.1: Introduction
J.2: Category A: Small Infill Projects
J.3: Category B: Larger Infill Projects
J.4: Category C: Transit-Oriented Development
J.5: LID Infeasibility Requirement for Special Projects

J.1 Introduction

On November 28, 2011, the San Francisco Bay Regional Water Quality Control Board (Water Board) amended the MRP to allow LID treatment reduction credits for three categories of smart growth, high density and transit oriented development project, described below. Projects that receive LID treatment reduction credits are allowed to use specific types of non-LID treatment, if the use of LID treatment is first evaluated and determined to be infeasible. As described in Section J.5, documentation must be provided to show why the use of LID treatment is considered infeasible.

The types of non-LID treatment that may be used are:
- High flow-rate media filters, and
- High flow-rate tree well filters (also called high flow-rate tree box filters).

The three categories of Special Projects are:
- Category A: Small Infill Projects (≤ ½ acre of impervious surface)
- Category B: Larger Infill Projects (≤ 2 acres of impervious surface)
- Category C: Transit-Oriented Development

Any Regulated Project that meets all the criteria for more than one Special Project Category (such as a Regulated Project that may be characterized as a Category B or C Special Project)
may only use the LID Treatment Reduction Credit allowed under one of the categories. For example, a Regulated Project that may be characterized as a Category B or C Special Project may use the LID Treatment Reduction Credit allowed under Category B or Category C, but not the sum of both.

J.2 Category A: Small Infill Projects

The defining criteria and LID treatment reduction credits for Category A projects are described below.

CRITERIA FOR CATEGORY A (SMALL INFILL) SPECIAL PROJECTS

To be considered a Category A Special Project, a Provision C.3 Regulated Project must meet all of the following criteria:

1. Be built as part of the municipality’s stated objective to preserve or enhance a pedestrian-oriented type of urban design.
2. Be located in the municipality’s designated central business district, downtown core area or downtown core zoning district, neighborhood business district or comparable pedestrian oriented commercial district, or historic preservation site and/or district.
3. Create and/or replace one half acre or less of impervious surface area.
4. Include no surface parking, except for incidental surface parking. Incidental surface parking is allowed only for emergency vehicle access, Americans with Disabilities Act (ADA) accessibility, and passenger and freight loading zones.
5. Have at least 85% coverage for the entire project site by permanent structures. The remaining 15% portion of the site is to be used for safety access, parking structure entrances, trash and recycling service, utility access, pedestrian connections, public uses, landscaping, and stormwater treatment.

LID TREATMENT REDUCTION FOR CATEGORY A (SMALL INFILL) SPECIAL PROJECTS

Any Category A Special Project may qualify for 100% LID Treatment Reduction Credit, which would allow the Category A Special Project to treat up to 100% of the amount of stormwater runoff specified by Provision C.3.d with either one or a combination of the two types of non-LID treatment systems identified in Section J.1. Prior to receiving the LID treatment reduction credits, the applicant must demonstrate, to the satisfaction of municipal staff, that LID treatment is infeasible, as described in Section J.5.

J.3 Category B: Larger Infill Projects

The defining criteria and LID treatment reduction credits for Category B projects are described below.
CRITERIA FOR CATEGORY B (LARGER INFILL) SPECIAL PROJECTS

To be considered a Category B Special Project, a Provision C.3 Regulated Project must meet all of the following criteria:

1. Be built as part of the municipality’s stated objective to preserve or enhance a pedestrian-oriented type of urban design.

2. Be located in a municipality’s designated central business district, downtown core area or downtown core zoning district, neighborhood business district or comparable pedestrian oriented commercial district, or historic preservation site and/or district.

3. Create and/or replace greater than one-half acre but no more than 2 acres of impervious surface area.

4. Include no surface parking, except for incidental surface parking. Incidental surface parking is allowed only for emergency vehicle access, ADA accessibility, and passenger and freight loading zones.

5. Have at least 85% coverage for the entire project site by permanent structures. The remaining 15% portion of the site is to be used for safety access, parking structure entrances, trash and recycling service, utility access, pedestrian connections, public uses, landscaping, and stormwater treatment.

LID TREATMENT REDUCTION FOR CATEGORY B (LARGER INFILL) SPECIAL PROJECTS

For Category B Special Projects, the maximum LID treatment reduction credit allowed varies depending upon the density achieved by the project in accordance with the criteria shown in Table J-1. Density is expressed in Floor Area Ratios (FARs) for commercial and mixed-use development projects and in Dwelling Units per Acre (DU/Ac) for residential development projects. The credits are expressed in percentages of the amount of stormwater runoff specified by Provision C.3.d for the Project’s drainage area. The Special Project may treat the percentage of the C.3.d amount of runoff that corresponds to the project’s density using either one or a combination of the two types of non-LID treatment systems listed in Section J.1. To be eligible to receive the LID treatment reduction credits, the applicant must demonstrate, to the satisfaction of municipal staff, that LID treatment is infeasible, as described in Section J.5. Any remaining amount of stormwater runoff must be treated with LID treatment measures.
Table J-1

<table>
<thead>
<tr>
<th>% of the C.3.d Amount of Runoff that May Receive Non-LID Treatment</th>
<th>Land Use Type</th>
<th>Density Required to Obtain the LID Treatment Reduction Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% Commercial or Mixed Use</td>
<td>Floor Area Ratio 2:1</td>
<td></td>
</tr>
<tr>
<td>50% Residential</td>
<td>50 dwelling units/acre</td>
<td></td>
</tr>
<tr>
<td>75% Commercial or Mixed Use</td>
<td>Floor Area Ratio 3:1</td>
<td></td>
</tr>
<tr>
<td>75% Residential</td>
<td>75 dwelling units/acre</td>
<td></td>
</tr>
<tr>
<td>100% Commercial or Mixed Use</td>
<td>Floor Area Ratio 4:1</td>
<td></td>
</tr>
<tr>
<td>100% Residential</td>
<td>100 dwelling units/acre</td>
<td></td>
</tr>
</tbody>
</table>

J.4 Category C: Transit-Oriented Development

The defining criteria and LID treatment reduction credits for Category C projects are described below.

CRITERIA FOR CATEGORY C (TRANSIT ORIENTED DEVELOPMENT) SPECIAL PROJECTS

To be considered a Category C Special Project, a Provision C.3 Regulated Project must meet all of the following criteria:

1. Be characterized as a non auto-related land use project. That is, Category C specifically excludes any Regulated Project that is a stand-alone surface parking lot; car dealership; auto and truck rental facility with onsite surface storage; fast-food restaurant, bank or pharmacy with drive-through lanes; gas station, car wash, auto repair and service facility; or other auto-related project unrelated to the concept of Transit-Oriented Development.

2. If a commercial or mixed-use development project, achieve at least an FAR of 2:1.

3. If a residential development project, achieve at least a density of 25 DU/Ac.

LID TREATMENT REDUCTION FOR CATEGORY C (TRANSIT-ORIENTED DEVELOPMENT)

For Category C Special Projects, the total maximum LID treatment reduction credit allowed is the sum of three different types of credits for which the Category C Special Project qualifies. These credits are categorized as follows:

- Location Credits,
- Density Credits,
Minimized Surface Parking Credits.

The Special Project may use either one or a combination of the two types of non-LID treatment systems listed in Section J.1 to treat the total percentage of the C.3.d amount of stormwater runoff that results from adding together the Location, Density and Minimized Surface Parking credits that the project is eligible for. In addition, to be eligible to receive the LID treatment reduction credits, the applicant must demonstrate, to the satisfaction of municipal staff, that LID treatment is infeasible, as described in Section J.5. Any remaining amount of stormwater runoff must be treated with LID treatment measures.

Location Credits (Transit-Oriented Development)

Location credits are based on the project site’s proximity to a transit hub\(^1\), or its location within a planned Priority Development Area (PDA)\(^2\). Only one Location Credit may be used by an individual Category C Special Project, even if the project qualifies for multiple Location Credits. In order to qualify for a Location Credit, at least 50 percent or more of a Category C Special Project’s site must be located within the \(\frac{1}{4}\) or \(\frac{1}{2}\) mile radius of an existing or planned transit hub, or 100 percent of the site must be located within a PDA. The Location Credits, presented in Table J-2, are expressed in percentages of the amount of stormwater runoff specified by Provision C.3.d for the project’s drainage area.

<table>
<thead>
<tr>
<th>% of the C.3.d Amount of Runoff that May Receive Non-LID</th>
<th>Project Site Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>50% or more of the site is located within a (\frac{1}{4}) or (\frac{1}{2}) mile radius of an existing or planned transit hub</td>
</tr>
<tr>
<td>25%</td>
<td>50% or more of the site is located within a (\frac{1}{2}) mile radius of an existing or planned transit hub</td>
</tr>
<tr>
<td>25%</td>
<td>100% of the site is located within a PDA</td>
</tr>
</tbody>
</table>

\(^1\) Transit hub is defined as a rail, light rail, or commuter rail station, ferry terminal, or bus transfer station served by three or more bus routes (i.e., a bus stop with no supporting services does not qualify). A planned transit hub is a station on the MTC’s Regional Transit Expansion Program list, per MTC’s Resolution 3434 (revised April 2006), which is a regional priority funding plan for future transit stations in the San Francisco Bay Area.

\(^2\) A planned Priority Development Area (PDA) is an infill development area formally designated by the Association of Bay Area Government’s / Metropolitan Transportation Commission’s FOCUS regional planning program. FOCUS is a regional incentive-based development and conservation strategy for the
Density Credits (Transit-Oriented Development)

To qualify for any Density Credits, a Category C Special Project must first qualify for one of the Location Credits listed above. The Density Credits are based on the density achieved by the project in accordance with the criteria shown in Table J-4. Density is expressed in Floor Area Ratios (FARs) for commercial and mixed-use development projects and in Dwelling Units per Acre (DU/Ac) for residential development projects. The credits are expressed in percentages of the amount of stormwater runoff specified in Provision C.3.d. Commercial and mixed-use Category C projects do not qualify for Density Credits based on DU/Ac, and residential Category C Projects do not qualify for Density Credits based on FAR. Only one Density Credit may be used by an individual Category C Special Project, even if the project qualifies for multiple Density Credits.

<table>
<thead>
<tr>
<th>% of the C.3.d Amount of Runoff that May Receive Non-LID Treatment</th>
<th>Land Use Type</th>
<th>Density Required to Obtain the Density Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Commercial or Mixed Use</td>
<td>Floor Area Ratio 2:1</td>
<td></td>
</tr>
<tr>
<td>10% Residential</td>
<td>30 dwelling units/acre</td>
<td></td>
</tr>
<tr>
<td>20% Commercial or Mixed Use</td>
<td>Floor Area Ratio 4:1</td>
<td></td>
</tr>
<tr>
<td>20% Residential</td>
<td>60 dwelling units/acre</td>
<td></td>
</tr>
<tr>
<td>30% Commercial or Mixed Use</td>
<td>Floor Area Ratio 6:1</td>
<td></td>
</tr>
<tr>
<td>30% Residential</td>
<td>100 dwelling units/acre</td>
<td></td>
</tr>
</tbody>
</table>

Minimized Surface Parking Credits (Transit-Oriented Development)

To qualify for any Minimized Surface Parking Credits, a Category C Special Project must first qualify for one of the Location Credits listed above. The LID treatment reduction credit is based on the amount of post-project impervious surface area that is dedicated to at-grade surface parking, in accordance with the criteria shown in Table J-3. The credits are expressed in percentages of the amount of stormwater runoff specified in Provision C.3.d. The at-grade surface parking must be treated with LID treatment measures. Only one Minimized Surface Parking Credit may be used by an individual Category C Special Project, even if the project qualifies for multiple Minimized Surface Parking Credits.
Table J-4
Minimized Surface Parking Credits for Category C, Transit Oriented Development
(Only one Minimized Surface Parking Credit may be used.)

<table>
<thead>
<tr>
<th>% of the C.3.d Amount of Runoff that May Receive Non-LID</th>
<th>Percentage of the Total Post-Project Impervious Surface Dedicated to At-Grade, Surface Parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>10% or less</td>
</tr>
<tr>
<td>20%</td>
<td>0% (except for emergency vehicle access, ADA accessibility and passenger and freight loading zones)</td>
</tr>
</tbody>
</table>

J.5 LID Infeasibility Requirement for Special Projects

In order to be considered a Special Project, in addition to documenting that all applicable criteria for one of the above-described Special Project categories have been met, the applicant must provide a narrative discussion of the feasibility or infeasibility of using 100 percent LID treatment onsite and offsite. Both technical and economic feasibility or infeasibility shall be discussed, as applicable. The discussion shall contain enough technical and/or economic detail to document the basis of any infeasibility that is determined.
Soil Specifications

The regional biotreatment soil specifications, approved by the Regional Water Board on November 28, 2011, are provided on the following pages. The soil specifications are included in Attachment L of the Municipal Regional Stormwater Permit (MRP), as amended. Effective December 1, 2011, stormwater biotreatment measures are required to use the Water Board-approved specifications. Alternative biotreatment mixes that achieve a long-term infiltration rate of 5 to 10 inches per hour, and are suitable for plant health, may be used in accordance with the requirements described in the specifications, under the heading “Verification of Alternative Bioretention Soil Mixes”.

APPENDIX K
Soils for biotreatment or bioretention areas shall meet two objectives:

- Be sufficiently permeable to infiltrate runoff at a minimum rate of 5" per hour during the life of the facility, and
- Have sufficient moisture retention to support healthy vegetation.

Achieving both objectives with an engineered soil mix requires careful specification of soil gradations and a substantial component of organic material (typically compost).

Local soil products suppliers have expressed interest in developing ‘brand-name’ mixes that meet these specifications. At their sole discretion, municipal construction inspectors may choose to accept test results and certification for a ‘brand-name’ mix from a soil supplier.

Tests must be conducted within 120 days prior to the delivery date of the bioretention soil to the project site.

Batch-specific test results and certification shall be required for projects installing more than 100 cubic yards of bioretention soil.

SOIL SPECIFICATIONS

Bioretention soils shall meet the following criteria. “Applicant” refers to the entity proposing the soil mixture for approval by a Permittee.

1. General Requirements – Bioretention soil shall:
 a. Achieve a long-term, in-place infiltration rate of at least 5 inches per hour.
 b. Support vigorous plant growth.
 c. Consist of the following mixture of fine sand and compost, measured on a volume basis:

 60%-70% Sand
 30%-40% Compost

2. Submittal Requirements – The applicant shall submit to the Permittee for approval:
 a. A sample of mixed bioretention soil.
 b. Certification from the soil supplier or an accredited laboratory that the Bioretention Soil meets the requirements of this guideline specification.
 c. Grain size analysis results of the fine sand component performed in accordance with ASTM D 422, Standard Test Method for Particle Size Analysis of Soils.
 d. Quality analysis results for compost performed in accordance with Seal of Testing Assurance (STA) standards, as specified in 4.
e. Organic content test results of mixed Bioretention Soil. Organic content test shall be performed in accordance with Testing Methods for the Examination of Compost and Composting (TMECC) 05.07A, “Loss-On-Ignition Organic Matter Method”.

f. Grain size analysis results of compost component performed in accordance with ASTM D 422, Standard Test Method for Particle Size Analysis of Soils.

g. A description of the equipment and methods used to mix the sand and compost to produce Bioretention Soil.

h. Provide the name of the testing laboratory(s) and the following information:
 (1) Contact person(s)
 (2) Address(s)
 (3) Phone contact(s)
 (4) E-mail address(s)
 (5) Qualifications of laboratory(s), and personnel including date of current certification by STA, ASTM, or approved equal

3. Sand for Bioretention Soil

a. Sand shall be free of wood, waste, coating such as clay, stone dust, carbonate, etc., or any other deleterious material. All aggregate passing the No. 200 sieve size shall be nonplastic.

b. Sand for Bioretention Soils shall be analyzed by an accredited lab using #200, #100, #40, #30, #16, #8, #4, and 3/8 inch sieves (ASTM D 422 or as approved by municipality), and meet the following gradation:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing (by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>90</td>
</tr>
<tr>
<td>No. 8</td>
<td>70</td>
</tr>
<tr>
<td>No. 16</td>
<td>40</td>
</tr>
<tr>
<td>No. 30</td>
<td>15</td>
</tr>
<tr>
<td>No. 40</td>
<td>5</td>
</tr>
<tr>
<td>No. 100</td>
<td>0</td>
</tr>
<tr>
<td>No. 200</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: all sands complying with ASTM C33 for fine aggregate comply with the above gradation requirements.
4. **Composted Material**

Compost shall be a well decomposed, stable, weed free organic matter source derived from waste materials including yard debris, wood wastes or other organic materials not including manure or biosolids meeting the standards developed by the US Composting Council (USCC). The product shall be certified through the USCC Seal of Testing Assurance (STA) Program (a compost testing and information disclosure program).

a. **Compost Quality Analysis** – Before delivery of the soil, the supplier shall submit a copy of lab analysis performed by a laboratory that is enrolled in the US Composting Council’s Compost Analysis Proficiency (CAP) program and using approved Test Methods for the Evaluation of Composting and Compost (TMECC). The lab report shall verify:

 (1) Feedstock Materials shall be specified and include one or more of the following:
 landscape/yard trimmings, grass clippings, food scraps, and agricultural crop residues.

 (2) Organic Matter Content: 35% - 75% by dry wt.

 (3) Carbon and Nitrogen Ratio: C:N < 25:1 and C:N >15:1

 (4) Maturity/Stability: shall have a dark brown color and a soil-like odor. Compost exhibiting a sour or putrid smell, containing recognizable grass or leaves, or is hot (120°F) upon delivery or rewetting is not acceptable. In addition any one of the following is required to indicate stability:

 (i) Oxygen Test < 1.3 O2/unit TS/hr

 (ii) Specific oxy. Test < 1.5 O2/unit BVS/

 (iii) Respiration test < 8 C/unit VS/day

 (iv) Dewar test < 20 Temp. rise (°C)

 (v) Solvita® > 5 Index value

 (5) Toxicity: any one of the following measures is sufficient to indicate non-toxicity.

 (i) NH4- : NO3-N < 3

 (ii) Ammonium < 500 ppm, dry basis

 (iii) Seed Germination > 80 % of control

 (iv) Plant Trials > 80% of control

 (v) Solvita® > 5 Index value

 (6) Nutrient Content: provide analysis detailing nutrient content including N-P-K, Ca, Na, Mg, S, and B.

 (i) Total Nitrogen content 0.9% or above preferred.

 (ii) Boron: Total shall be <80 ppm; Soluble shall be <2.5 ppm

 (7) Salinity: Must be reported; < 6.0 mmhos/cm

 (8) pH shall be between 6.5 and 8. May vary with plant species.
b. **Compost for Bioretention Soil Texture** – Compost for bioretention soils shall be analyzed by an accredited lab using #200, 1/4 inch, 1/2 inch, and 1 inch sieves ASTM D 422 or as approved by municipality), and meet the following gradation:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing (by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>1 inch</td>
<td>99</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>90</td>
</tr>
<tr>
<td>1/4 inch</td>
<td>40</td>
</tr>
<tr>
<td>No. 200</td>
<td>2</td>
</tr>
</tbody>
</table>

c. Bulk density shall be between 500 and 1100 dry lbs/cubic yard
d. Moisture content shall be between 30% - 55% of dry solids.
e. **Inerts** – compost shall be relatively free of inert ingredients, including glass, plastic and paper, < 1 % by weight or volume.
f. **Weed seed/pathogen destruction** – provide proof of process to further reduce pathogens (PFRP). For example, turned windrows must reach min. 55C for 15 days with at least 5 turnings during that period.
g. **Select Pathogens** – Salmonella <3 MPN/4grams of TS, or Coliform Bacteria <10000 MPN/gram.
h. **Trace Contaminants Metals (Lead, Mercury, Etc.)** – Product must meet US EPA, 40 CFR 503 regulations.
i. **Compost Testing** – The compost supplier will test all compost products within 120 calendar days prior to application. Samples will be taken using the STA sample collection protocol. (The sample collection protocol can be obtained from the U.S. Composting Council, 4250 Veterans Memorial Highway, Suite 275, Holbrook, NY 11741 Phone: 631-737-4931, www.compostingcouncil.org). The sample shall be sent to an independent STA Program approved lab. The compost supplier will pay for the test.

VERIFICATION OF ALTERNATIVE BIORETENTION SOIL MIXES

Bioretention soils not meeting the above criteria shall be evaluated on a case by case basis. Alternative bioretention soil shall meet the following specification: “Soils for bioretention facilities shall be sufficiently permeable to infiltrate runoff at a minimum rate of 5 inches per hour during the life of the facility, and provide sufficient retention of moisture and nutrients to support healthy vegetation.”

The following steps shall be followed by municipalities to verify that alternative soil mixes meet the specification:
1. **General Requirements** – Bioretention soil shall achieve a long-term, in-place infiltration rate of at least 5 inches per hour. Bioretention soil shall also support vigorous plant growth. The applicant refers to the entity proposing the soil mixture for approval.

 a. **Submittals** – The applicant must submit to the municipality for approval:

 (1) A sample of mixed bioretention soil.

 (2) Certification from the soil supplier or an accredited laboratory that the Bioretention Soil meets the requirements of this guideline specification.

 (3) Certification from an accredited geotechnical testing laboratory that the Bioretention Soil has an infiltration rate between 5 and 12 inches per hour as tested according to Section 1.b.(2)(ii).

 (4) Organic content test results of mixed Bioretention Soil. Organic content test shall be performed in accordance with by Testing Methods for the Examination of Compost and Composting (TMECC) 05.07A, “Loss-On-Ignition Organic Matter Method”.

 (5) Grain size analysis results of mixed bioretention soil performed in accordance with ASTM D 422, Standard Test Method for Particle Size Analysis of Soils.

 (6) A description of the equipment and methods used to mix the sand and compost to produce Bioretention Soil.

 (7) The name of the testing laboratory(s) and the following information:

 (i) contact person(s)

 (ii) address(s)

 (iii) phone contact(s)

 (iv) e-mail address(s)

 (v) qualifications of laboratory(s), and personnel including date of current certification by STA, ASTM, or approved equal

 b. **Bioretention Soil**

 (1) Bioretention Soil Texture

 Bioretention Soils shall be analyzed by an accredited lab using #200, and 1/2” inch sieves (ASTM D 422 or as approved by municipality), and meet the following gradation:

 | Sieve Size | Percent Passing (by weight) | |
|---|---|---|
 | | Min | Max |
 | 1/2 inch | 97 | 100 |
 | No. 200 | 2 | 5 |

 (2) Bioretention Soil Permeability testing

 Bioretention Soils shall be analyzed by an accredited geotechnical lab for the following tests:
(i) Moisture – density relationships (compaction tests) shall be conducted on bioretention soil. Bioretention soil for the permeability test shall be compacted to 85 to 90 percent of the maximum dry density (ASTM D1557).

(ii) Constant head permeability testing in accordance with ASTM D2434 shall be conducted on a minimum of two samples with a 6-inch mold and vacuum saturation.

MULCH FOR BIORETENTION FACILITIES

Mulch is recommended for the purpose of retaining moisture, preventing erosion and minimizing weed growth. Projects subject to the State’s Model Water Efficiency Landscaping Ordinance (or comparable local ordinance) will be required to provide at least two inches of mulch. Aged mulch, also called compost mulch, reduces the ability of weeds to establish, keeps soil moist, and replenishes soil nutrients. Aged mulch can be obtained through soil suppliers or directly from commercial recycling yards. It is recommended to apply 1" to 2" of composted mulch, once a Year, preferably in June following weeding.