C3 Advanced Topics: Stormwater Treatment Measure Sizing and Design Considerations

> SMCWPPP C.3 Workshop June 3, 2020

Jill Bicknell, P.E., EOA, Inc.

Presentation Overview

- Sizing/Design of Self-Treating and Self-Retaining Areas
- Sizing/Design of Treatment Measures
 - Determining the Water Quality Design Flow and Volume
 - Bioretention and Flow-Through Planters
 - Pervious Pavement and Infiltration Trenches
 - High-Rate Media Filters

Site Design Measures to Reduce Runoff Requiring Treatment

- Self-Treating Areas
- Self-Retaining Areas
- Interceptor Tree Credits

Self-Treating Area

- Pervious area that treats rain falling on itself only, via ponding, infiltration and ET
 - Landscaping
 - Green roof
 - Pervious pavement
 - Artificial turf

- Landscaped areas must retain approx. 1" of rain
- Pervious pavement and artificial turf must be designed to store and infiltrate the C.3.d amount of runoff in order to qualify as self-treating areas

Self-Treating Areas Reduce the Area Requiring Treatment

- Runoff from pervious portions of the project (after infiltrating 1") can flow directly to the storm drain (if not mixing with runoff from impervious areas)
- Runoff from impervious areas can flow to a smaller treatment measure

Self-Retaining Area

- Pervious area that retains first 1" of rainfall on itself and runoff from adjacent impervious area, up to a 2:1 ratio (impervious:pervious)
 - Roof runoff dispersion to depressed landscaped area
 - Partial green roofs
 - Pervious pavement (with adequate storage)
- No special soils required
- Area must be able to retain up to 3" of ponding

Design of Self-Retaining Areas

- Landscaped areas
 - Plan sheet should indicate a relatively flat, concave, landscaped surface with ponding depth as follows:

Depth = 1 inch + [(Imperv Area ÷ Perv Area) X 1 inch]

- Elevation of any area drains should be set at top of ponding depth
- Partial green roofs and pervious pavement
 - Calculate depth of water quality volume using equation above
 - Determine depth of media/aggregate require to store the water quality volume

Self-Retaining Areas Reduce the Area that Requires Treatment

- Runoff from impervious portions of the project can flow directly to a pervious area that is at least 50% of the size of the contributing area
- Runoff from other impervious areas can flow to a smaller treatment measure

"Interceptor" Tree Credits

- Self-treating area credit allowed based on the interception of rainwater by the tree canopy
- Intended for <u>small areas</u> that can't be treated

Type of Tree Planted or Preserved	Square footage deducted from area requiring stormwater treatment
Evergreen: new planting	200 sq. ft. per tree
Deciduous: new planting	100 sq. ft. per tree
Preserve existing trees (either evergreen or deciduous)	Square footage beneath canopy

C.3.d Sizing Criteria for Treatment Measures

- Volume-based sizing criteria:
 - <u>URQM Method</u> use formula and volume capture coefficients in "Urban Runoff Quality Management", WEF/ASCE MOP No. 23 (1998), pages 175-178

-Not generally used - more conservative than CASQA method

 <u>CASQA BMP Handbook Method</u> - Determine volume equal to 80% of the annual runoff, using methodology in Appendix D of the CASQA BMP Handbook (2003) using local rainfall data

-Use sizing information specific to San Mateo County rain gages (see C.3 Regulated Projects Guide, Appendix C)

C.3.d Sizing Criteria

- Flow-based sizing criteria:
 - <u>Factored Flood Flow</u> 10% of the 50-year peak flow rate, determined using Intensity-Duration-Frequency curves from local flood control agency

-Not generally used

 <u>Percentile Rainfall Intensity</u> - Flow of runoff produced by a rain event equal to two times the 85th percentile hourly rainfall intensity

-No local data available for San Mateo County

• <u>Uniform Intensity</u> - Flow of runoff resulting from a rain event equal to 0.2 inches per hour intensity

C.3.d Sizing Criteria

- Flow-based sizing criteria:
 - <u>Simplified Sizing Approach</u> Variation of Uniform Intensity Method (0.2 in/hr)
 - Surface area of biotreatment measure is sized to be 4% of the contributing impervious area
 - -Based on runoff of 0.2 in/hr (assume equal to the rainfall intensity), with an infiltration rate through the biotreatment soil of 5 in/hr (0.2 in/hr \div 5 in/hr = 0.04)
 - Conservative approach because does not account for surface ponding; but maximizes infiltration

C.3.d Sizing Criteria

- Combination Flow & Volume Design Basis:
 - Treatment systems can be sized to treat "at least 80% of total runoff over the life of the project"
 - Option 1: Use a continuous simulation hydrologic model (typically not done for treatment measures)
 - Option 2: Show how treatment measure sizing meets both flow and volume-based criteria
 - –Used for bioretention and flow-through planters
 - -See guidance in Chapter 5, Section 5.1 of C.3 Regulated Project Guide and Combination Flow-Volume Sizing Worksheet

Flow- or Volume-Based Sizing for Treatment Measures?

	Table 5	-1
Flow and Volume Based	Treatmo	ent Measure Sizing Criteria
Type of Treatment Measure	LID?	Hydraulic Sizing Criteria
Bioretention area	Yes	Flow- or volume-based or combination
Flow-through planter box	Yes	Flow- or volume-based or combination
Tree well filter	Some	Flow-based
Pervious pavement	Yes	Volume-based
Infiltration trench	Yes	Volume-based
Subsurface infiltration system	Yes	Volume-based
Rainwater harvesting/use	Yes	Volume-based
Media filter	No	Flow-based

Sizing Guidance

- Appendix B of C.3 Regulated Project Guide
 - Sizing examples
- Appendix C of C.3 Regulated Project Guide
 - Figure 1: Design Criteria Regions for San Mateo County
 - Figure 2: Mean Annual Precipitation
- SMCWPPP Website:

<u>https://www.flowstobay.org/preventing-stormwater-pollution/with-new-</u> <u>redevelopment/c-3-regulated-projects/</u>

 Sizing worksheets for determining water quality design volume, and combination flow/volume

C.3 Regulated Projects Guide, Appendix C:

Treatment Measure Design Criteria Regions for San Mateo County

Sizing Bioretention Facilities

- Simplified Sizing (Flow-Based) Approach
 - Surface area is 4% of contributing impervious area
 - Does not consider storage in surface ponding area
- Volume Based Approach
 - Store V_{WQ} in just surface ponding area
 - Store V_{WQ} in ponding area, soil media and drain rock
- Combination Flow and Volume Approach
 - Compute both $\mathbf{Q}_{\mathbf{W}\mathbf{Q}}$ and $\mathbf{V}_{\mathbf{W}\mathbf{Q}}$
 - "Route" through facility, allowing ponding

Simplified Sizing (Flow-based) Example

- Parking lot in Brisbane
 - Area = 35,000 sq. ft.
 (0.80 acres)
 - 100% impervious
 - MAP not needed
 - Uniform intensity = 0.2 in/hr
- Surface area of bioretention:
 - Area X 0.04 = 1,400 sq. ft.
 - Note: if drainage area contains pervious area, multiply pervious area by 0.1 and add to impervious area to get "effective impervious area"

Sizing Example (Volume-based)

- Parking lot in Brisbane
 - Area = 35,000 sq. ft.
 (0.80 acres)
 - 100% impervious
 - Mean annual precipitation (MAP) = 23"
 - Rainfall Region #5, MAP = 21"
- Use the sizing worksheets to determine the water quality design volume (V_{wq})

https://www.flowstobay.org/preventing-stormwater-pollution/with-newredevelopment/c-3-regulated-projects/#forms

Sizing Example (Volume-based)

- Parking lot in Brisbane
 - Area = 35,000 sq. ft.
 (0.80 acres)
 - 100% impervious
 - Mean annual precipitation (MAP) = 23"
 - Rainfall Region #5, MAP = 21"
- Use the sizing worksheets to determine the water quality design volume (Vwo)
- Answer: V_{WQ} = 2,332 cu. ft.

Sizing Bioretention Facilities: Volume-Based Approach

Sizing Bioretention Facilities: Volume-Based Approach

Method 1: Store entire volume in surface ponding area

V ₁	Depth (ft)	Porosity	Volume per sq. ft. (cubic feet)
	0.5	1.0	0.5

Surface Area = V_{WQ} (cu.ft.) \div 0.5 cu.ft./sq.ft.

Sizing Example:

• 2,332 cu.ft. ÷ 0.5 cu.ft./sq.ft. = 4,664 sq.ft.

Sizing Bioretention Facilities: Volume-Based Approach

Method 2: Store volume in ponding area and media

	Depth (ft)	Porosity	Volume per sq. ft. (cubic feet)
V ₁	0.5	1.0	0.5
V ₂	1.5	0.30	0.45
V ₃	0.5*	0.40	0.20
		Total	1.15

*Depth below underdrain at 6" above bottom

Surface Area = V_{WQ} (cu.ft.) \div 1.15 cu.ft./sq.ft.

• 2,332 cu.ft. ÷ 1.15 cu.ft./sq.ft. = 2,028 sq.ft. 🕿

Sizing Bioretention Facilities: Flow & Volume Approach

"Hydrograph Approach"

- Runoff is "routed" through the treatment measure
- Assume rectangular hydrograph that meets both flow and volume criteria
- Duration of hydrograph =
 V ÷ Q

Sizing Bioretention Facilities: Flow & Volume Approach

- Determine V_{wQ}
- Assume constant rainfall intensity of 0.2 in/hr continues throughout the storm (rectangular hydrograph)
- Calculate the duration of the storm by dividing the Unit Basin Storage by the rainfall intensity
- Calculate the volume of runoff that filters through the biotreatment soil at 5 in/hr over the storm duration
- Calculate the volume that remains on the surface and ponding depth

Sizing Bioretention Facilities: Flow & Volume Approach

- To start the calculation, you have to assume a surface area "A_s" -- use 3% of the contributing impervious area as a first guess
- Determine volume of treated water "V_T" during storm:

 $V_T = A_S \times 5$ in/hr x duration (hrs) x 1 in/12 ft

Determine volume remaining on the surface "Vs":

 $V_s = V_{WQ} - V_T$

Determine depth "D" of ponding on the surface:

$$D = V_s \div A_s$$

Repeat until depth is approximately 6 inches

Sizing Example (Combo Method)

- Parking lot in Brisbane
 - Area = 35,000 sq. ft. (0.80 ac.)
 - 100% impervious
 - V_{wQ} = 2,332 cu. ft.
 - Adj. UBS Volume = 0.80 in.
- Use the combination flow and volume sizing worksheet to determine the bioretention surface area
 <u>https://www.flowstobay.org/preventing-stormwater-pollution/with-new-redevelopment/c-3-regulated-projects/#forms</u>

Sizing Example (Combo Method)

- Parking lot in Brisbane
 - Area = 35,000 sq. ft. (0.80 ac.)
 - 100% impervious
 - V_{wQ} = 2,332 cu. ft.
 - Adj. UBS Volume = 0.80 in.
- Use the combination flow and volume sizing worksheet to determine the bioretention surface area
- Answer: 1,075 sq. ft. (with depth = 6.0")

Sizing Bioretention Facilities: Comparison of Methods

Example: 35,000 sq. ft. parking lot in Brisbane MAP= 23 inches, 100% impervious V_{wQ} = 2,332 cu. ft. (80% of annual runoff)

Sizing Method	Surface Area (sq. ft.)	
Simplified Method (flow-based)	1,400	
Volume ponded on surface	4,664	
Volume stored in unit $(V_1+V_2+V_3)$	2,028	
Combination flow & volume	1,075	•

Sizing Pervious Pavement and Infiltration Trenches

General Principles

- Store the V_{wQ} in void space of stone base/subbase and infiltrate into subgrade
- Surface allows water to infiltrate at a high rate
- Any underdrains must be placed above the void space needed to store and infiltrate the V_{WQ}

Sizing Pervious Pavement and Infiltration Trenches

Pervious Pavement

- May be self-treating area or self-retaining area (accept runoff from other areas)
- Can only be considered a "pervious area" if stone base/subbase sized to store the V_{WQ}
- Can work where native soils have low infiltration rates (stored water depths are relatively small)
- Surface area is usually predetermined
- Base and subbase thickness usually determined by expected traffic load and saturated soil strength
- Slope should be \leq 3% (or use check dams/trenches in subbase)

Pervious Pavement Typical Section

- Base and subbase layers available for water storage
- Both typically have 40% void space

Pervious Pavement

- Approach to Sizing Pervious Pavement
 - Self-Treating

-Check the depth of the V_{WQ} in base/subbase: V_{WQ} (in.) ÷ 0.40 = Depth (in.)

Example: V_{WQ} = 1.0 in., Depth = 2.5 in. (Minimum depth for vehicular traffic is 10 in.)

—Check the time required for stored water to drain:
V_{wQ} (in.) ÷ Infiltration rate (in/hr) = Drain time (hrs) (recommend < 48 hrs)</p>

Pervious Pavement

- Approach to Sizing Pervious Pavement
 - Self-Retaining (receives runoff from adjacent areas)
 - —Add the V_{wQ} for adjacent areas to the V_{wQ} for the pervious pavement, divide the total by pervious pavement area
 - —Do not exceed 2:1 ratio of contributing area to pervious area
 - -Check depth of total V_{WQ} in base/subbase: V_{WQ} (in.) ÷ 0.40 = Depth (in.)

Example: V_{wq} = 3.0 in., depth = 7.5 in.

-Check the time required for stored water to drain:

 V_{WQ} (in.) ÷ Infiltration rate (in/hr) = Drain time (hrs)

- Differences from Pervious Pavement
 - More runoff must infiltrate in a smaller footprint
 - Infiltration rate of site soils must be at least 0.5 in/hr (i.e., not suitable for "C" or "D" soils)
 - Trench depths are typically between 3 and 8 feet
 - Infiltration trench is an "infiltration device"
 - -Minimum 10-foot separation from seasonal high groundwater level
 - –Must meet other MRP requirements
 - –Cannot be "deeper than wide" (definition of Class V injection well)

- Design Parameters
 - Trench depth is calculated based on the soil infiltration rate, aggregate void space, and the trench storage time
 - The stone aggregate used in the trench is typically 1.5 to 2.5 inches in diameter, which provides a void space of approximately 35 %
 - Trenches should drain within 72 hours
 - Place underdrain above void space needed for storage of V_{wQ}

- Approach to Sizing Infiltration Trenches
 - Trench unit storage volume: S = n × d
 n = gravel porosity (0.35); d = gravel depth (ft)
 - Subsoil unit infiltration capacity: S_i = k × t ÷ 12 k = subsoil permeability (in/hr); t = time (hrs) (recommend maximum of 72 hrs)
 - Check for trench drainage by infiltration:

If $S \leq S_i$: Increase depth of media until $S = S_i$ to match trench capacity to infiltration capacity (may decrease surface area needed)

If S > S_i: Decrease depth of media until S = S_i (surface area may increase)

- Approach to Sizing Infiltration Trenches
 - Determine required trench area:

•
$$A_T = V_{WQ} \div S$$

 A_T = Trench area required to store treatment volume (sq.ft.)

 V_{WQ} = Water quality design volume (cu. ft.)

S = Trench unit storage volume (cu.ft./sq.ft.)

- Determine required trench width:
 - W = $A_T \div L$
 - W = Width of trench (ft.)
 - A_T = Required trench area (sq. ft.)

L = Length of trench (ft.) (normally length of treatment area)

Sizing High-Rate Media Filters

Media Filters (cartridge type)

- Flow-based Treatment Measure
- Determine Q_{wQ}
- Select a product that is certified by Washington State TAPE program*
- Determine the <u>TAPE-approved</u> design flow rate per cartridge

Prevention Program

 Divide Q_{wQ} by the cartridge flow rate to calculate the required number of cartridges (round up)

*General Use Level Designation (GULD) for Basic Treatment

<u>https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies</u>

Sizing High-Rate Media Filters

Proprietary Tree Box Filters

- Flow-based Treatment Measure
- Determine Q_{wQ}
- Select a product that is certified by Washington State TAPE program
- Determine the <u>TAPE-approved</u> infiltration rate for the media

- Calculate the required surface area by dividing Q_{wQ} by the infiltration rate (ft/sec)
- A tree box filter that uses biotreatment soil media can be sized like a flow-through planter

Sizing Example (Flow-based)

- Rooftop in Brisbane (Special Project)
 - Area = 35,000 sq. ft. (0.80 ac.)
 - 100% impervious
 - Uniform intensity = 0.2 in/hr
 - Runoff coefficient = 0.90
- Use the Rational Method
 (Q = CIA) determine the water
 quality design flow, Q_{wQ}

Answer: Q_{WQ} = (0.9)(0.2)(0.8) = 0.144 cfs

Sizing Example (Flow-based)

- Rooftop in Brisbane (Special Project)
 - **Q**_{WQ} = 0.144 cfs = 64.6 gpm
 - Select media filter type
 - Check for TAPE certification and allowable flow rate
- Example: FloGard Perk Filter
 - "Size at hydraulic loading rate of ≤1.5 gpm/ft² of media surface area"
 - For 18" cartridge, loading rate is 10.2 gpm/cartridge
 - 64.6 gpm \div 10.2 gpm/cartridge = 6.3, or <u>7 cartridges</u>

Questions?

Jill Bicknell, P.E. jcbicknell@eoainc.com

