

QSP Training Module 2 Erosion Theory

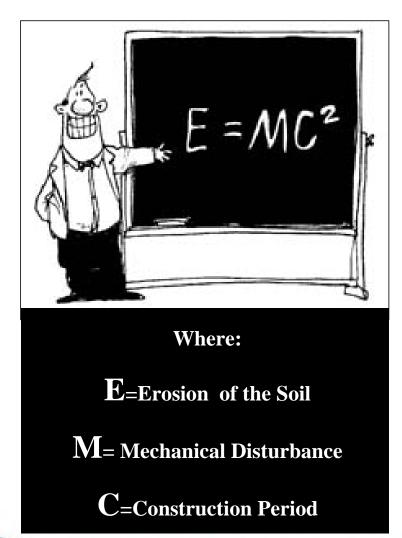
Erosion Mechanisms and RUSLE

Presentation Agenda

Erosion Theory

Types of Erosion

Sedimentation Processes


Overview

Erosion Prediction (RUSLE)

Example Using RUSLE

Erosion is Relative

What is erosion?

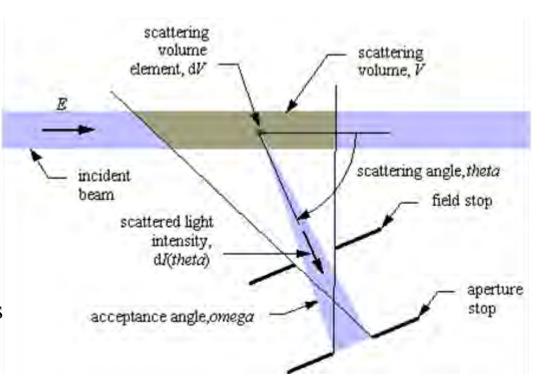
Soil erosion is the process by which soil particles become detached by water, wind, or gravity and are transported from their original location

- What do we need to understand about erosion?
 - Understand how to prevent it
 - Understand how it varies for site conditions
 - Understand the causes
 - Understand how to predict it

- Why is it bad?
 - Turbid water:
 - Reduces light
 - Abrades fish gills
 - Deposits and covers vegetation
 - Contains metals, nutrients, other
 - Can get you fined.

What is Sedimentation?

- To settle soil particles from suspension in quiescent conditions.
- If you don't have erosion, you do not need sedimentation.


Types of Erosion

- Splash/Raindrop Erosion
- Sheet Erosion (Interrill erosion)
- Rill Erosion
- Gully Erosion
- Channel Erosion
- All types occur on a construction site, but have different solutions to reduce or eliminate them

What is Turbidity?

- Turbidity is measured in Nephelometric Turbidity Units (NTUs)
- The instrument used for measuring it is called a nephelometer or turbidimeter, which measures the intensity of light scattered at an angle as a beam of light passes through a water sample

Raindrop Erosion

- Primary source of erosion
- Raindrop erosion is often imperceptible
- Indicators
 - Pedestals
 - Stains
 - Gravelling or Lag
- Prevent by: Protecting Soil

http://www.dot.ca.gov

Splash Erosion

- Rain drops striking bare soil directly at 5-20 mph
 - Detaches soil particles
 - Particles can then be transported by the action of water and/or wind

Stormwate

Sheet Erosion (Interrill Erosion)

- The removal of a uniform thin layer of soil by raindrop splash or water run-off
- Surface film of water 1/16" 1/8" deep
- This process may occur unnoticed on exposed soil even though raindrops are eroding large quantities of soil
- Prevention: Soil binders or covers

Stormwate

Rill Erosion

- Sheet flows that become concentrated into conveyance
- Well-defined channels
- Small enough to step across
- Often end part way up a slope but can extend to crest by "headcutting"
- Increased velocity and turbulence
- The rate of rill erosion can be approximately **100 X greater than sheet erosion**.

Stormwate

• Prevention: Cover or segment slope

Gully Erosion

- Several rills may form throughout a slope and eventually may join together to form Gullies
- The rate of gully erosion can be approximately 100 X greater than rill erosion
- Prevention: Control of flow, armoring

Gully Erosion

- Look for the following visual cues:
 - Large, deep cuts in soil
 - Single cuts
 - Often too large to step across
 - Often found in areas without evidence of other erosion types

Key Point – Gully and Rill erosion are caused by concentrated flows. Always treat the "problem" first – not the symptom.

Channel Erosion and Sedimentation

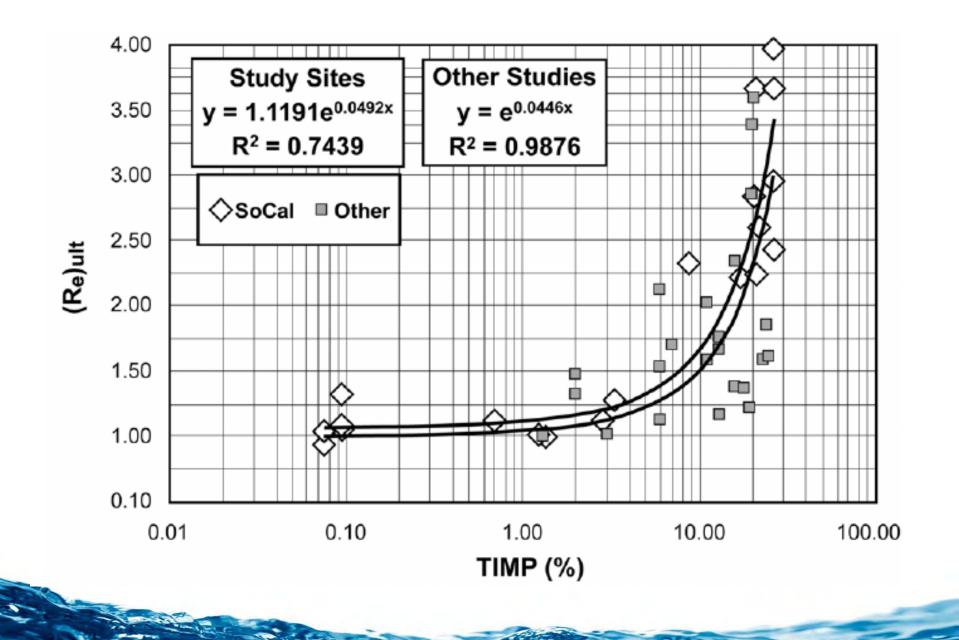
- Total sediment load in a channel is made up of bed material load and wash load.
- Bed Material Load: Composed of grain sizes in bed and banks. Moves along the bed and in suspension.
- Wash Load: Originates from land surface, very fine, very small settling velocity – function of supply, not hydraulics – computed by RUSLE/MUSLE

Stormwai

Sediment Load Classification

		Classification System	
		Based on Mechanism of Transport	Based on Particle Size
Total sediment load	Wash load	Suspended load	Wash load
	Suspended bed-material load		Bed-material load
	Bed load	Bed load	

Lane's Relationship

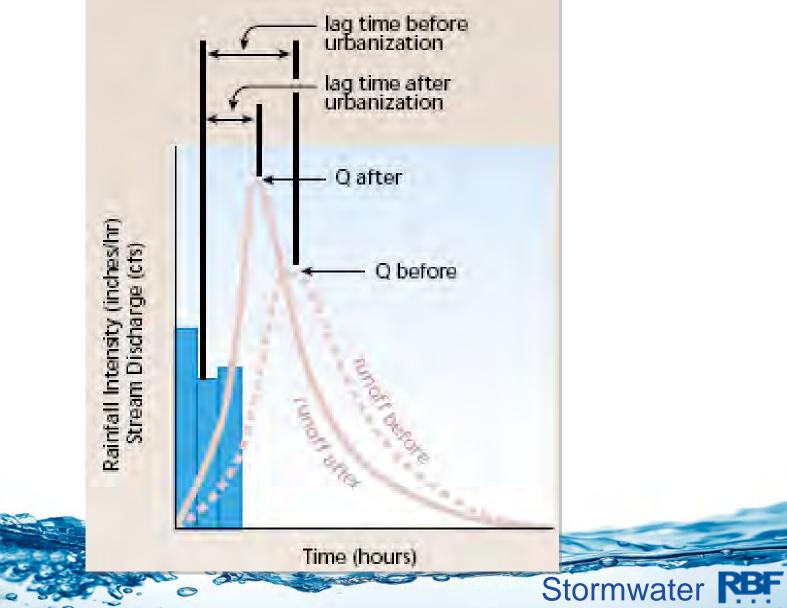

Stormwate

- Channel equilibrium is dependent on four basic factors described by Lane (1955):
- Where: $Q_s \cdot D_{50} \propto Q_w \cdot S$
 - $Q_s =$ Sediment discharge (bed material)
 - D₅₀=Median particle size
 - Q_w=Water discharge
 - S = Channel slope

Impact of Urbanization

- Volume of flow increases from 2 to 16 times with urbanization
- Urbanization has a greater impact on frequent events than on rare events
- Stream degradation (impact channel erosion) begins at levels of watershed imperviousness (change) of from about 10% (or less)

Stormwate



Flow Mitigation - Urbanization

- It is important to reduce **flow volume** since it directly impacts streams, this is also a key mitigation method for improving water quality.
- Peak flow for storms with recurrence intervals from 1 to 10 years should also be controlled for hydromodification impacts.
- For construction sites, these impacts will be controlled by the <u>post-construction BMPs</u>. They must be installed and operational prior to filing the NOT

Urbanization and Flow

Concept Review

- What is most important for channel stability?
 - 1. Sediment from the watershed
 - 2. Bed material load
 - 3. Suspended load
 - 4. Wash load

Answer: 2. Bed Material Load

Concept Review

- If a channel receives and increase in water discharge (Q_w), what is a likely response?
 - 1. Decrease in channel slope
 - 2. Aggradation
 - 3. Increased meander
 - 4. Reduced cross section

Answer: 1. and 3.

Concept Review

- Changes to the stream can be caused by:
 - 1. A change in sediment supply
 - 2. A change in sediment transport capacity
 - 3. A change in bank erodability
 - 4. A change in discharge

All of the above.

BMP Tool Box – Erosion Control

- Spray on binders
- Spray on mulches
- Spray on matrix
- Hydroseed
- RECPs
- Which is best?
 - Depends on: Design life, slope ratio, soil type and \$ you want to spend.

BMP Tool Box – Runoff Control

- Maintain vegetation cover
- Diversion
- Detention
- Which is best?
 - Always use scheduling to maintain cover
 - Divert flows when possible around work area

Stormwate

Detention for flow control is a last resort

BMP Tool Box – Sediment Control

- Silt Fence
- Straw Wattle
- Gravel Bag
- Check Dam
- Sediment Basin
- Sediment Trap
- Which is best?
 - None work very well, all are required

Which are More Effective... Erosion Control or Sediment Control?

• Erosion controls are preferred

- Keep the soil in its place
- Enhance the protection of the site resources
- Use erosion controls as the primary protection, with sediment controls as a secondary system.
- Erosion controls give you about 85% of the overall program effectiveness

Stormwa

Basic Preventative Measures

- 1. Schedule site activities to minimize exposed soil area and duration
- 2. Divert flow around disturbed soil
- 3. Use temporary soil cover
- 4. Use sediment controls as a supplement to soil cover

Wind Erosion – WEQ and RWEQ

- Depending on wind velocity and particle size, soil particles move by saltation, surface creep, and suspension.
- May be estimated by: E = f (I x K x C x L x V)

E= the potential average annual soil loss in tons per acre

- f = a function of
- I = the soil erodivility index. It is related to the percentage of nonerodible soil aggregates larger than 0.84 mm in diameter
- K =the surface roughness factor
- C = the climate factor. It is based on the average wind velocity and surface soil moisture
- L = the unsheltered distance across a field or strip along the prevailing wind erosion direction
- V = the vegetative cover factor

Wind Erosion - Stockpiles

E = 1.7(S/1.5)((365-p)/235)(f/15)

Where:

- E = Total suspended particulates, lb/day/acre of pile
- S = silt content, percent
- P = number of days per year with ≥ 0.01 " rainfall
- F = percent time with wind speed > 12 mph at mean pile height

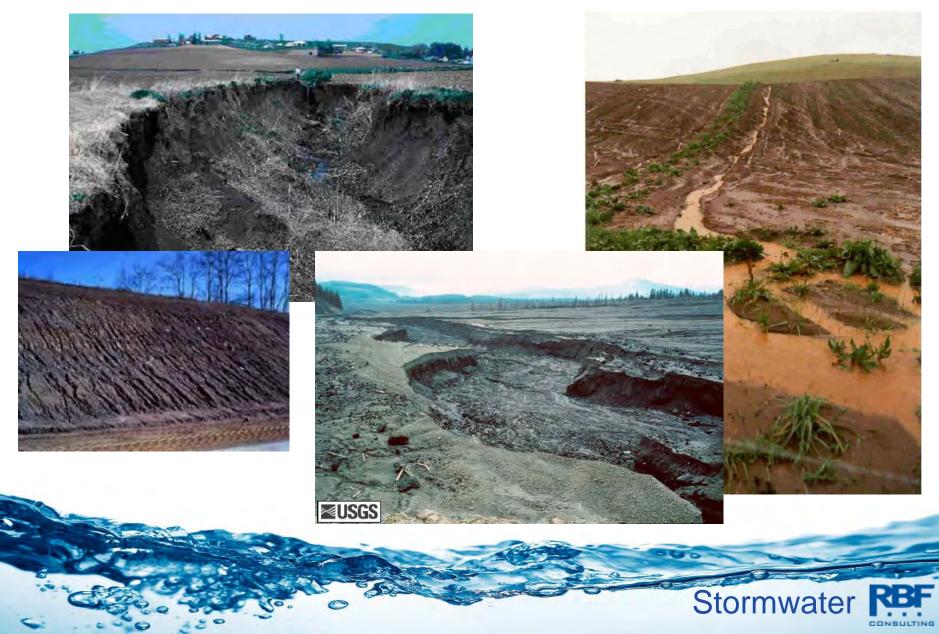
Stormwate

Wind Erosion Control

- Control system for wind erosion work in one of two ways:
 - Reduce wind speed on the soil surface
 - Form a new, less erodible soil surface

Reducing Wind Speed at Soil Surface

- Covering the pile with a wind-impervious fabric or other material
- Changing the pile orientation and shape



Forming a New Less Erodible Surface

- Spraying water to compact and weight the soil particles
- Applying a chemical dust suppressant or soil binder to form a crust or bind the surface soil particles together
- Establishing vegetation
 - Roots bind the soil together; stems and leaves reduce wind speed at soil surface

Pop Quiz – What kind of erosion is it?

Vegetation

A cover of temporary or permanent vegetation is the primary goal of <u>all</u> erosion control efforts

Sediment Yield

Channel Assessment Tool

Sediment Yield Estimation

- Channels must normally be stabilized in response to development
- RUSLE and MUSLE: Methods for estimating sheet erosion. Methods designed to predict average annual soil losses by sheet and rill erosion on upslope areas.
- Can be used to understand sediment contribution before and after project.
- RUSLE gives average annual sediment, MUSLE provides estimate for discrete events

Sediment Yield

- MUSLE Equation:
- Where:
 - Y = Sediment yield (tons/storm)
 - V_w = Runoff volume (acre-ft)
 - $q_p = \text{Peak flow (cfs)}$
 - $C_1 \& C_2 = \text{Coeff's}$

 $Y = C_1 \left(V_w q_p \right)^{C_2} K(LS) CP$

Sediment Yield

- K = Soil erodability factor, defined as the erosion rate in tons per acre.
- LS = Dimensionless slope length factor equal to the ratio of soil loss per unit area.
- C = Dimensionless cropping management factor.
- P = Dimensionless erosion control practice factor.

Stormwate

• $C_1 = 95, C_2 = 0.56$

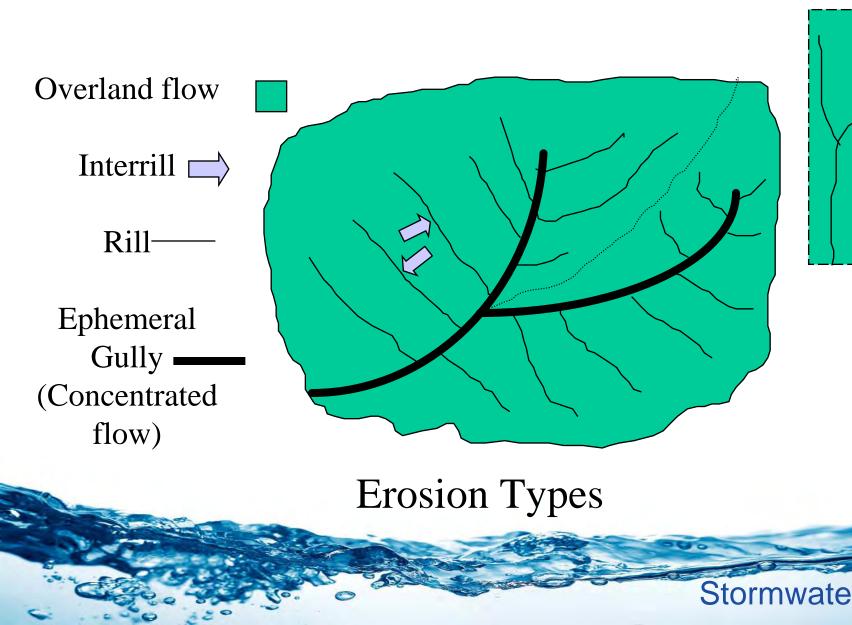
Using RUSLE

The Revised Universal Soil Loss Equation

- The most widely used and tested model
- Used as a tool to estimate erosion rate
- Used to determine if a construction site qualifies for a low rainfall erosivity waiver
- Can be used <u>to test the acceptability of temporary</u> erosion and sediment controls

History of USLE/RUSLE

- **1930's** First model included soil erodibility, rainfall, groundcover for agricultural purposes.
- **1940's** Slope steepness/ length and practice were added to equation.
- **1956** USLE was universally adopted by USDA and the Soil Erosion Laboratory was established at Purdue University.
- 1970's RUSLE published included revised rainfall data maps, added new conservation practices and combined slope L & S (LS) to reflect a ratio.
- **1990's** RUSLE 2 developed (Windows Based Program)
- **2000** Initial testing by NRCS
- **2004** Implementation and field verification



RUSLE 2

- Computer model used to predict rill & inter-rill erosion caused by rainfall
- Calculates sediment yield on a daily basis
- RUSLE2 is an upgrade of the text-based RUSLE DOS version 1
- The USDA-Agricultural Research Service (ARS) is the lead agency for developing the RUSLE2 model.

Landscape

RUSLE2 Area

Validation of RUSLE

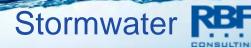
• 10,000 plot-years of data from natural runoff plots

• 2000 plot-years of rainfall simulator data

• Proven by more than 4 decades of worldwide use by its predecessors, USLE and RUSLE

RUSLE

$\mathbf{A} = \mathbf{R} \cdot \mathbf{K} \cdot \mathbf{L} \, \mathbf{S} \cdot \mathbf{C} \cdot \mathbf{P}$


- Rainfall (*R*) (energy)
- Soil Erodibility (*K*)
- Slope Length and Steepness Factor (*LS*)

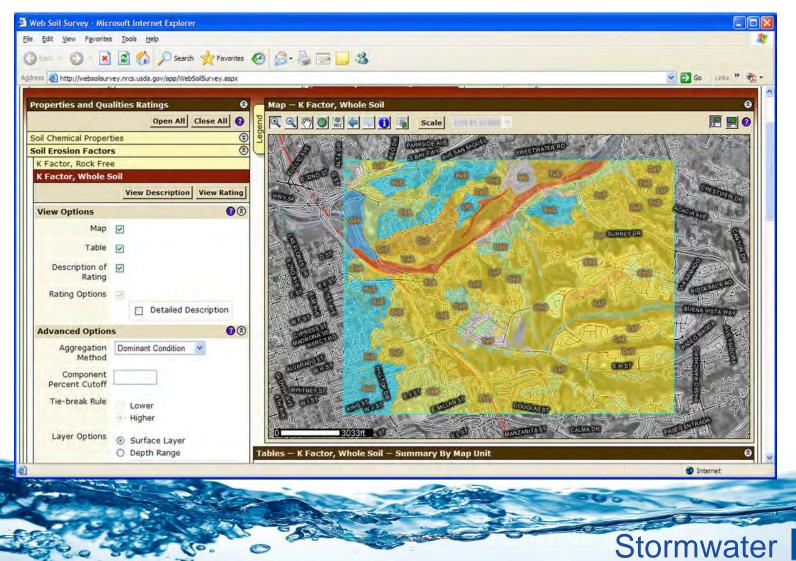

- Conservation Factor (*C*)
- Support Practices (P)

Rainfall Runoff Erosivity Factor (R)

Rainfall Erosivity Factor for a given geographic location


Map for R - Factor

 $R = E \times I/n$ Where, E = kinetic raindropenergy I = maximum 30-minutestorm intensity n = number of rainfallevents



Soil Erodibility (K)

The ease with which soil is detached by drop *impact* or tractive force for *surface flow* or *both.*

NRCS Soils Data Base San Diego County, Lynwood Hills and Bonita Area

Soil Erodibility Factor "K"

Data from NRCS Web Soil Survey

Top Depth	Summary by Map	Unit – San Diego County Area, Cal	ifornia		(
Bottom	Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
O Inches	CbD	Carlsbad gravelly loamy sand, 9 to 15 percent slopes	.15	29.9	0.6%
Centimeters	CcC	Carlsbad-Urban land complex, 2 to 9 percent slopes	.15	101.1	2.19
All Layers	CcE	Carlsbad-Urban land complex, 9 to 30 percent slopes	.15 K V	Value 17.9	0.49
View Description View Rating	CkA	Chino silt loam, saline, 0 to 2 percent slopes	.43	81.6	5 1.7
Wind Erodibility Group	DaC	Diablo clay, 2 to 9 percent slopes	.17	50.7	1.09
Vind Erodibility Index	DaD	Diablo clay, 9 to 15 percent slopes	.17	42.4	0.99
il Physical Properties 🛞	DaE	Diablo clay, 15 to 30 percent slopes	.17	115.6	2.49
il Qualities and Features	DaF	Diablo day, 30 to 50 percent slopes	.17	106.5	2.29
ater Features 🛞	DcD	Diablo-Urban land complex, 5 to 15 percent slopes	.17	268.4	5.59
	DcF	Diablo-Urban land complex, 15 to 50 percent slopes	.17	56.4	1.20
	GaE	Gaviota fine sandy loam, 9 to 30 percent slopes	.28	104.4	2.2
	HrC	Huerhuero loam, 2 to 9 percent slopes	.37	12.4	0.3
	HrD	Huerhuero loam, 9 to 15 percent slopes	.37	9.8	0.2
	HrE2	Huerhuero loam, 15 to 30 percent slopes, eroded	.37	60.4	1.2
	HuC	Huerhuero-Urban land complex, 2 to 9 percent slopes	.37	399.3	8.2
	HuE	Huerhuero-Urban land complex, 9 to 30 percent slopes	.37	201.3	4.19
	LfC	Las Flores-Urban land complex, 2 to 9 percent slopes	.37	32.1	0.79
	LSE	Linne clay loam, 9 to 30 percent slopes	.17	284.6	5.99
	LsF	Linne clay loam, 30 to 50 percent slopes	.17	1,207.7	24.99
	Md	Made land		41.6	0.9
	OhC	Olivenhain cobbly loam, 2 to 9 percent	.20	284.2	5.99

T-Factors for Soils

Edit View Favorites Tools Help					
Back - 🔘 🖹 💈 🏠 🔎 Search 👷 Favorites 🤞	🛛 🖉 · 🍓 🖂	5 3			
ress Dhttp://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx					Go Links »
Interpret Nulls as Yes	Tables — T Factor	— Summary By Map Unit			6
Zero No		p Unit — San Diego County Area, Ca	lifornia		8
View Description View Rating	Map unit symbol	Map unit name	Rating (tons per acre per year)	Acres in AOI	Percent of AOI
Wind Erodibility Group Wind Erodibility Index	CbD	Carlsbad gravelly loamy sand, 9 to 15 percent slopes	2	29.9	0.6%
Soil Physical Properties (S) Soil Qualities and Features (S)	CcC	Carlsbad-Urban land complex, 2 to 9 percent slopes	2	101.1	2.1%
Vater Features	CcE	Carlsbad-Urban land complex, 9 to 30 percent slopes	2	17.9	0.4%
	CkA	Chino silt loam, saline, 0 to 2 percent slopes	5	81.6	1.7%
	DaC	Diablo clay, 2 to 9 percent slopes	3	50.7	1.0%
	DaD	Diablo clay, 9 to 15 percent slopes	3	42.4	0.9%
	DaE	Diablo clay, 15 to 30 percent slopes	3	115.6	2.4%
	DaF	Diablo clay, 30 to 50 percent slopes	3	106.5	2.2%
	DcD	Diablo-Urban land complex, 5 to 15 percent slopes	3	268.4	5.5%
	DcF	Diablo-Urban land complex, 15 to 50 percent slopes	3	56.4	1.2%
	GaE	Gaviota fine sandy loam, 9 to 30 percent slopes	1	104.4	2.2%
	HrC	Huerhuero loam, 2 to 9 percent slopes	2	12.4	0.3%
	HrD	Huerhuero loam, 9 to 15 percent slopes	2	9.8	0.2%
	HrE2	Huerhuero loam, 15 to 30 percent slopes, eroded	2	60.4	1.2%
	HuC	Huerhuero-Urban land complex, 2 to 9 percent slopes	2	399,3	8.2%
	HuE	Huerhuero-Urban land complex, 9 to 30 percent slopes	2	201.3	4.1%

Slope Length and Steepness (LS)

A ratio of slope length to steepness

"LS" Topographic Factor

LS FACTORS FOR CONSTRUCTION SITES

Values for topographic factor, LS, for high ratio of rill to interrill erosion.1

								H	lorizontal s	lope length	(ft)			1.1	100		
Slope (%)	<3	6	9	12	15	25	50	75	100	150	200	250	300	400	600	800	1000
0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0,05	0.05	0.06	0.06	0.06	0.08	0.06	0.06	0.0
0.5	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.10	0.11	0.12	0.12	0.1
1.0	0.09	0.09	0.09	0.09	0.09	0.10	0.13	0.14	0.15	0.17	0.18	0.19	0.20	0.22	0.24	0.28	0.2
2.0	0.13	0.13	0.13	0.13	0.13	0,16	0.21	0.25	0.28	0.33	0.37	0.40	0.43	0.48	0.56	0.63	0.6
3.0	0.17	0.17	0.17	0.17	0.17	0.21	0.30	0.36	0.41	0.50	0.57	0.64	0.69	0.80	0.96	1.10	1.2
4.0	0.20	0.20	0.20	0.20	0.20	0.26	0.38	0.47	0.55	0.68	0.79	0.89	0.98	1.14	1.42	1.65	1.8
5.0	0.23	0.23	0.23	0.23	0.23	0.31	0.46	0,58	0.68	0.88	1.02	1.18	1.28	1.51	1.91	2.25	2.5
6.0	0.28	0.26	0.26	0.26	0.26	0.36	0.54	0.69	0.82	1.05	1.25	1.43	1.60	1.90	2.43	2.89	3.3
8.0	0.32	0.32	0.32	0.32	0.32	0.45	0.70	0.91	1.10	1.43	1.72	1.99	2.24	2.70	3.52	4.24	4.9
0.0	0.35	0,37	0.38	0.39	0.40	0.57	0.91	1.20	1.46	1.92	2.34	2.72	3.09	3.75	4.95	6.03	7.0
2.0	0.36	0.41	0.45	0.47	0.49	0.71	1.15	1.54	1.88	2.51	3.07	3,80	4.09	5.01	6.67	8.17	9.5
4.0	0.38	0.45	0.51	0.55	0.58	0.85	1.40	1.87	2.31	3.09	3.81	4.48	5,11	8.30	8.45	10.40	12.2
8.0	0.39	0.49	0.56	0.62	0.67	0.98	1.64	2.21	2.73	3.68	4.56	5.37	8.15	7.60	10.26	12.89	14.9
0.0	0.41	0.56	0.67	0.76	0.84	1.24	2.10	2.86	3.57	4.85	6.04	7.16	8.23	10.24	13.94	17.35	20.5
5.0	0.45	0.64	0.80	0.93	1.04	1.56	2.67	3.67	4.59	6.30	7.88	9.38	10.81	13.53	18.57	23.24	27.6
0.0	0.48	0.72	0.91	1.08	1.24	1,86	3.22	4.44	5.58	7.70	9.67	11.55	13.35	16.77	23.14	29.07	34.7
0.0	0.53	0.85	1.13	1.37	1.59	241	4.24	5.89	7.44	10.35	13.07	15.67	18,17	22.95	31.89	40.29	48.2
0.0	0.58	0.97	1.31	1.62	1.91	2.91	5.16	7.20	9.13	12,75	18.16	19.42	22.57	28.60	39.95	50.63	60.8
0.0	0.63	1.07	1.47	1.84	2.19	3.36	5.97	8.37	10.63	14.89	18.92	22.78	28.51	33.67	47.18	59.93	72.1

Such as for freshly prepared construction and other highly disturbed soil conditions with little or no cover (not applicable to thawing soil).

Move to next highest number – do not interpolate

Cover Factor (C)

The C factor indicates how the *surface cover* will affect the average soil loss.

Reference Table

M	anning's Roughness Coefficients		0	-	•		s ¹ And	
	RUSLE Conservatio							
Material Category	Material Type	Mannii	ng' <i>n</i> Va	alues	Conser	vation F $(C)^2$	actors	Cover
Category		Flow I	Depth R	anges	Slo	pe Leng	gth	Factor
			(ft)					(C_f)
		0.0-0.5	0.5-2.0	>2.0	< 20ft	20-50ft	>50ft	
Rigid	Concrete	0.015	0.013	0.013	N/A	N/A	N/A	1.00
	Grouted riprap	0.040	0.030	0.030	N/A	N/A	N/A	1.00
	Soil cement	0.025	0.025	0.020	N/A	N/A	N/A	1.00
	Asphalt	0.018	0.018	0.016	N/A	N/A	N/A	1.00
Unvegetated	Bare soil	0.023	0.020	0.020	1.00	1.00	1.00	
	Rock cut	0.045	0.035	0.025	N/A	N/A	N/A	
Temporary ³	Woven nets (synthetics and, organics)	0.016	0.015	0.015	0.11	0.21	0.30	0.80
	Jute net	0.028	0.022	0.019	0.10	0.12	0.18	0.76
	Straw blankets	0.065	0.033	0.025	0.106	0.118	0.18	0.87
	Curled wood fiber (excelsior)	0.066	0.035	0.028	0.11	0.21	0.30	0.85
	Synthetic and Coir mats TRMs	0.036	0.025	0.021	0.018	0.04	0.07	0.97
	Crimped Straw Mulch (2tons/acre)	0.035	0.030	0.025	0.10	0.15	0.19	0.84
	Crimped Straw Mulch (4 tons/acre)	0.050	0.035	0.030	0.02	0.04	0.07	0.97

Conservation Factors (C)

Manning's *n*

Cover Factors (C_f)

¹ Some materials generally identified as Turf Reinforcing Mats (TRMs) become permanent when buried ² Values of C are compiled from manufacturers literature, Temple, and Lane ³ From HEC-15. Values were compiled from several sources see HEC-15 references 5, 8, 13, 14, 15

⁴ Some manufacturers publish n values for their products these maybe used at the discretion of the designer. However, since the standard specification allows contractors to select any material on the approved product list it is important to be somewhat conservative when selecting the value of n for design purposes.

Support Practices (P)

Support practices affect erosion by altering the flow pattern, redirecting, or reducing the runoff.

Practice Factor "P"

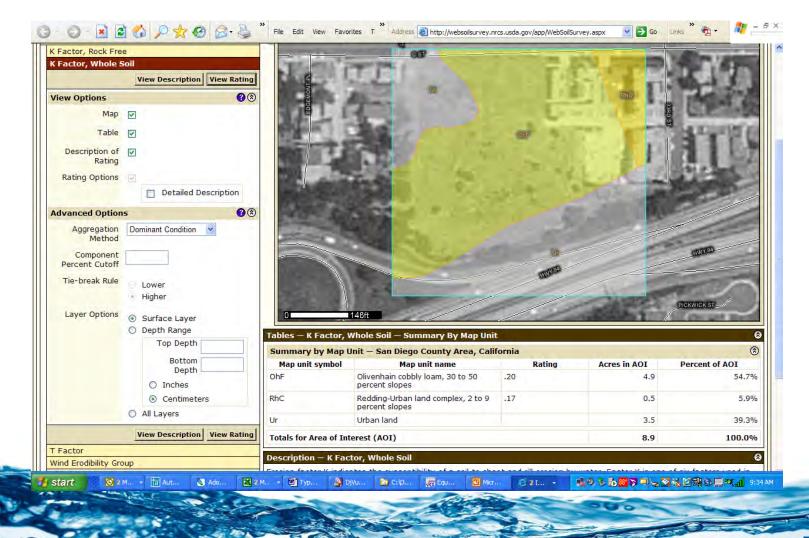
 Table 6-14. Some typical P values for barriers constructed on a silt loam soil at Lexington,

 Kentucky.

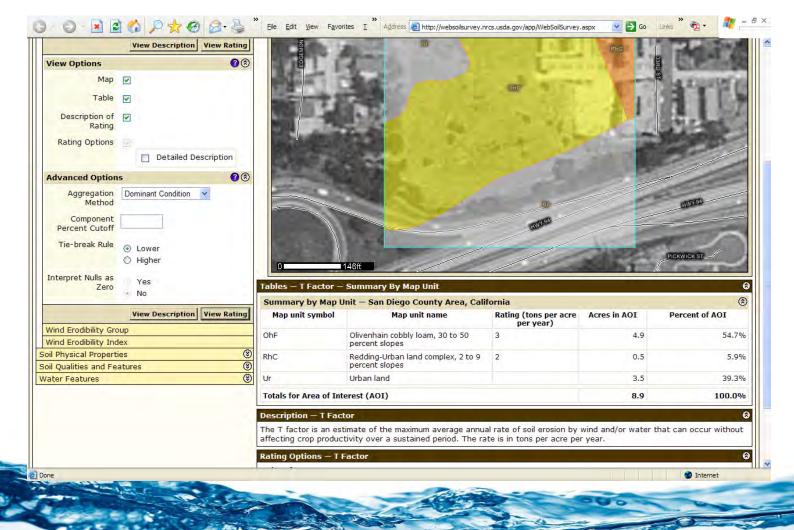
	Structure Type									
Gradient %	Shortgrass Strip	Gravel Bag	Stiff Grass Hedge	Silt Fence						
<5	0.37	0.21	0.11	0.08						
5-10	0.55	0.37	0.21	0.15						
10-15	0.67	0.55	0.45	0.37						

Example Application

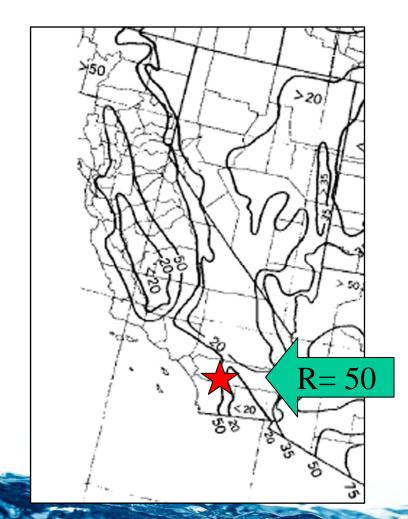
- Find the predicted soil erosion for a site in San Diego County.
- Find the base erosion rate for 1) disturbed soil condition and 2) undeveloped condition for a site near the intersection near the intersection of IH-15 and CA 94.
- The maximum developed slope of 35% and a maximum length of 100ft,
- The existing (undeveloped) average is 30% for 250 ft.


Site IH-15 and CA 94 San Diego

Soil Map



NRCS K Factor


Stormwater RBF

NRCS T Factor

R-Value

The RUSLE 2 Program has a much more sophisticated weather model generator. Using the program can significantly improve the predictions.

Select the Conservation Practice

Μ	anning's Roughness Coefficients						ls ¹ And		
	RUSLE Conservation								
Material	Material Type	Mannii	ng' <i>n</i> Va	alues	Conser	vation F	Factors	G	
Category						$(C)^2$		Cover Factor (C_f)	
		Flow I	Depth R	anges	Slo	pe Leng	gth		
		0.0-0.5	(ft) 0.5–2.0	>2.0	< 20ft	20-50ft	>50ft		
Rigid	Concrete	0.0-0.5				N/A	N/A	1.00	
	Grouted riprap	0.040	0.030	0.030	N/A	N/A	N/A	1.00	
	Soil cement	0.025	0.025	0.020	N/A	N/A	N/A	1.00	
	Asphalt	0.018	0.018	0.016	N/A	N/A	N/A	1.00	
Unvegetated	Bare soil	0.023	0.020	0.020	1.00	1.00	1.00		
	Rock cut	0.045	0.035	0.025	N/A	N/A	N/A		
Temporary ³	Woven nets (synthetics and, organics)	0.016	0.015	0.015	0.11	0.21	0.30	0.80	
	Jute net	0.028	0.022	0.019	0.10	0.12	0.18	0.76	
	Straw blankets	0.065	0.033	0.025	0.106	0.118	0.18	0.87	
	Curled wood fiber (excelsior)	0.066	0.035	0.028	0.11	0.21	0.30	0.85	
	Synthetic and Coir mats TRMs	0.036	0.025	0.021	0.018	0.04	0.07	0.97	
	Crimped Straw Mulch (2tons/acre)	0.035	0.030	0.025	0.10	0.15	0.19	$\left \right\rangle$	
	Crimped Straw Mulch (4 tons/acre)	0.050	0.035	0.030	0.02	0.04	0.07	0.97	

For the first trial use crimped straw at 2000 lbs /acre.

Stormwate

0.19

Some materials generally identified as Turf Reinforcing Mats (TRMs) become permanent when buried

² Values of C are compiled from manufacturers literature, Temple, and Lane
 ³ From HEC-15. Values were compiled from several sources see HEC-15 references 5, 8, 13, 14, 15

⁴ Some manufacturers publish n values for their products these maybe used at the discretion of the designer. However, since the standard specification allows contractors to select any material on the approved product list it is important to be somewhat conservative when selecting the value of n for design purposes.

Practice Factor P

 Table 6-14. Some typical P values for barriers constructed on a silt loam soil at Lexington,

 Kentucky.

	Structure Type										
Gradient %	Shortgrass Strip	Gravel Bag	Stiff Grass Hedge	Silt Fence							
<5	0.37	0.21	0.11	0.08							
5-10	0.55	0.37	0.21	0.15							
10-15	0.67	0.55	P=0.37	0.37							

Slope Length Factor

LS FACTORS FOR CONSTRUCTION SITES Values for topographic factor, LS, for high ratio of rill to interrill erosion.¹ Horizontal slope length (ft) Slope <3 15 50 75 150 300 6 9 12 25 100 200 250 400 600 800 (%) 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0,05 0.05 0.08 0.06 0.06 0.08 0.06 0.06 0.08 0.09 0.09 0.10 0.12 0.12 0.07 0.07 0.08 0.10 0.10 0.11 0.5 0.07 0.07 0.07 0.07 0.09 0.09 0.09 0.09 0.09 0.10 0.13 0.14 0.15 0.17 0,18 0.19 0.20 0.22 0.24 0.26 1.0 0.25 0.28 0.33 0.37 0.40 0.48 0.56 0.63 0.13 0.13 0.13 0.13 0.13 0.16 0.21 0.43 2.0 0.36 0.41 0.50 0.57 0.96 1.10 3.0 0.17 0.17 0.17 0.17 0.17 0.21 0,30 0.64 0.89 0.80 0.20 0.38 0.47 0.55 0.68 0.79 0.89 0.98 1.14 1.42 1.65 0.20 0.26 4.0 0.20 0.20 0.20 0.23 0.31 0.46 0.58 0.68 0.88 1.02 1.18 1.28 1.51 1.91 2.25 0.23 0.23 0.23 0.23 5.0 0.82 1.05 1.25 0.26 0.26 0.26 0.28 0.28 0.38 0.54 0.69 1.43 1.60 1.90 2.43 2.89 6.0 0.32 0.45 0.70 0.91 1.10 1.43 1.72 1.99 2.24 2.70 3.52 4.24 0.32 0.32 0.32 0.32 8.0 0.91 1.20 1.46 1.92 2.34 2.72 3.09 3.75 4.95 6.03 10.0 0.35 0.37 0.38 0.39 0.40 0.57

Such as for freshly prepared construction and other highly disturbed soil conditions with little or no cover (not applicable to thawing soil).

0.49

0.58

0.67

0.84

1.04

1.24

1.59

1,91

2.19

0.41

0.45

0.49

0.56

0.64

0.72

0.85

0.97

1.07

0.36

0.38

0.39

0.41

0.45

0.48

0.53

0.58

0.63

12.0

14.0

18.0

20.0

25.0

30.0

40.0

50.0

60.0

0.45

0.51

0.56

0.67

0.80

0.91

1.13

1.31

1.47

0.47

0.55

0.62

0.76

0.93

1.08

1.37

1.62

1.84

0.71

0.85

0.98

1.24

1.58

1.86

2.41

2.91

3.36

1.15

1.40

1.64

2.10

2.67

3.22

4.24

5.16

5,97

1.54

1.87

2.21

2.86

3.67

4.44

5.89

7.20

8.37

1.88

2.31

2.73

3.57

5.58

7.44

9.13

10.63

4.59

2.51

3.09

3.68

4.0

8.

7.

10.35

12.75

14.89

3.07

3.81

4.56

0 04

13.07

18.16

18.92

LS=7.44

3.60

4.48

5.37

7 40

15.67

19.42

22.78

4.09

5.11

6.15

8.23

10.81

13.35

18.17

22.57

28.51

5.01

6.30

7.60

10.24

13.53

16.77

22.95

28.60

33.67

6.67

8.45

10.28

13.94

18.57

23.14

31.89

39.95

47.18

Stormwater R

1000

0.06

0.13

0.27

0.69

1.23

1.88

2.55

3.30

4.91

7.02

9.57

12.23

14.96

20.57

27.66

34.71

48.29

60.84

72.15

8.17

10.40

12.89

17.35

23.24

29.07

40.29

50.63

59.93

Example – During Construction

$A = R \cdot K \cdot LS \cdot C \cdot P$ $A = 50 \times .0.20 \times 7.44 \times 0.19 \times 1$

 $A = 14.14^{\frac{Tons}{\underline{Acre}}}$

 $A = 50 \times .0.20 \times 7.44 \times 0.19 \times 0.37$

 $A = 5.51^{\frac{Tons}{\underline{Acre}}}$

Note: T for these soils is 3 tons/acre/year

Undeveloped Erosion Rate

The undeveloped condition is approximately 80% rough grass and brush cover with an average long slope of 30% for 250 ft.

Vegetative canop	у	Co	over th	at cor	ntacts	the so	il surfa	ce	
	ercent			Pe	rcent	ground	cover		
height ² c	over3	Type ⁴	0	20	40	60	80	9∕ ⊧	
No appreciable		G	0.45	0.20	0.10	0.042	0.013	\overline{C}	
canopy		w	.45	.24	.15	.091	.043	V	
Tall weeds or	25	G	.36	.17	.09	.038	.013	.003	
short brush with average		w	.36	.20	.13	.083	.041	.011	
drop fall height	50	G	.26	.13	.07	.035	.012	.003	
of 20 in		w	.26	.16	.11	.076	.039	.011	
	75	G	.17	.10	.06	.032	.011	.003	
		w	.17	.12	.09	.068	.038	.011	
Appreciable brush	25	G	.40	.18	.09	.040	.013	.003	
or bushes, with average drop fall	I	w	.40	.22	.14	.087	.042	.011	
height of 61/2 ft	50	G	.34	.16	.08	.038	.012	.003	
		w	.34	.19	.13	.082	.041	.011	
	75	G	.28	.14	.08	.036	.012	.003	
		w	.28	.17	,12	.078	.040	.011	
Trees, but no	25	G	.42	.19	.10	.041	.013	.003	
appreciable low brush. Average		w,	.42	.23	.14	.089	.042	.011	
drop fall height	50	G	.39	.18	.09	.040	.013	.003	
of 13 ft		w	.39	.21	.14	.087	.042	.011	
	75	G	.36	.17	.09	.039	.012	.003	

TABLE 10.---Factor C for permanent pasture, range, and

¹ The listed C values assume that the vegetation and mulch are randomly distributed over the entire area.

w

.36 .20 .13 .084 .041 .011

² Canopy height is measured as the average fall height of water drops falling from the canopy to the ground. Canopy effect is inversely proportional to drop fall height and is negligible if fall height exceeds 33 ft.

³ Portion of total-area surface that would be hidden from view by canopy in a vertical projection (a bird's-eye view).

- *G: cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 in deep,
- W: cover at surface is mostly broadleaf herbaceous plants (as weeds with little lateral-root network near the surface) or undecayed residues or both.

Tables of C Values, Undeveloped Lands

TABLE 11.---Factor C for undisturbed forest land¹

Percent of area covered by canopy of trees and undergrowth	Percent of area covered by duff at least 2 in deep	Factor C ²
100-75	100-90	.0001001
70-45	85-75	.002004
40-20	70-40	.003009

¹ Where effective litter cover is less than 40 percent or canopy cover is less than 20 percent, use table 6. Also use table 6 where woodlands are being grazed, harvested, or burned.

² The ranges in listed C values are caused by the ranges in the specified forest litter and canopy covers and by variations in effective canopy heights.

LS Factor

LS FACTORS FOR CONSTRUCTION SITES

Values for topographic factor, LS, for high ratio of rill to interrill erosion.¹

	Horizontal slope length (ft)																
Slope (%)	<3	6	9	12	15	25	50	75	100	150	200	250	300	400	600	800	1000
0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.08	0.06	0.06	0.06
0.5	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.10	0.11	0.12	0.12	0.13
1.0	0.09	0.09	0.09	0.09	0.09	0.10	0.13	0.14	0.15	0.17	0.18	0.19	0.20	0.22	0.24	0.28	0.27
2.0	0.13	0.13	0.13	0.13	0.13	0.16	0.21	0.25	0.28	0.33	0.37	0.40	0.43	0.48	0.56	0.63	0.69
3.0	0.17	0.17	0.17	0.17	0.17	0.21	0.30	0.36	0.41	0.50	0.57	0.64	0.69	0.80	0.96	1.10	1.23
4.0	0.20	0.20	0.20	0.20	0.20	0.26	0.38	0.47	0.55	0.68	0.79	0.89	0.98	1.14	1.42	1.65	1.88
5.0	0.23	0.23	0.23	0.23	0.23	0.31	0.46	0,58	0.68	0.86	1.02	1.18	1.28	1.51	1.91	2.25	2.55
6.0	0.26	0.26	0.26	0.28	0.26	0.38	0.54	0.69	0.82	1.05	1.25	1.43	1.60	1.90	2.43	2.89	3.30
8.0	0.32	0.32	0.32	0.32	0.32	0.45	0.70	0.91	1.10	1.43	1.72	1.99	2.24	2.70	3.52	4.24	4.91
10.0	0.35	0.37	0.38	0.39	0.40	0,57	0.91	1.20	1.46	1.92	2.34	2.72	3.09	3.75	4.95	6.03	7.02
12.0	0.36	0.41	0.45	0.47	0.49	0.71	1.15	1.54	1.88	2.51	3.07	3,60	4.09	5.01	6.67	8.17	9.57
14.0	0.38	0.45	0.51	0.55	0.58	0.85	1.40	1.87	2.31	3.09	3.81	4.48	5.11	8.30	8.45	10.40	12.23
18.0	0.39	0.49	0,56	0.62	0.67	0.98	1.84	2.21	2.73	3.68	4.56	5.37	6.15	7.60	10.28	12.89	14.96
20.0	0.41	0.56	0.67	0.76	0.84	1.24	2,10	2.88	3.57	4.85	6.04	7.16	8.23	10.24	13.94	17.35	20.57
25.0	0.45	0.64	0.80	0.93	1.04	1.56	2.67	3.67	4.59	6.30	7.88	9.38	20-				27,66
30.0	0.48	0.72	0.91	1.08	1.24	1.86	3.22	4.44	5.58	7.70	9.67	11.55	$\langle $	LS=	=11.55		34.71
0.0	0.53	0.85	1.13	1.37	1.59	2.41	4.24	5.89	7.44	10.35	13.07	15.67	10				48.29
50.0	0.58	0.97	1.31	1.62	1.91	2.91	5.16	7.20	9.13	12.75	18.16	19.42	22.57	28.60	39.95	50.63	60.84
50.0	0.63	1.07	1.47	1.84	2.19	3.36	5.97	8.37	10.63	14.89	18.92	22.78	28.51	33.67	47.18	59.93	72.15

Such as for freshly prepared construction and other highly disturbed soil conditions with little or no cover (not applicable to thawing soil).

٠

Example: Undeveloped Condition

R and K remain the same as for the disturbed condition, LS and C change and there is no other management practice. $A = R \cdot K \cdot LS \cdot C \cdot P$ $A = 50 \times .0.20 \times 11.55 \times .013 \times 1$ Tons Acre $A = 1.50^{Year}$ T for these soils is 3 tons/acre/year Stormwate

Benefits of Using the RUSLE

- Estimate erosion potential W/O BMPs
- Potentially provides tools for optimizing design in some conditions do what if scenarios
- Calculate BMP effectiveness
- Evaluates impacts of erosion material leaving site
- Conservation planning less than soil "T" factor
- It is a defensible methodology if properly applied

Problems of Applying RUSLE

- Few documented C & P values for construction applications at this time (especially P)
- Limited calibration of interaction of C and P factor combinations
- Numerous technical adjustments needed to achieve more accurate predictions
- Does not provide estimates for:
 - gully or streambank erosion
 - sediment yield from watersheds
- Estimates tend to be conservative compared to other methods

